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Summary
Coronary heart disease (CHD) remains the leading cause of morbidity and mortality worldwide (Lu
& Lan, 2022). While many observational studies have documented associations between risk
factors such as smoking, hypertension, dyslipidemia, diabetes, and obesity with coronary heart
disease (CHD), association is not causation. In this project, we applied causal inference approaches
using the Cleveland UCI heart-disease dataset to estimate the causal effect of modifiable risk
factors on CHD. We have employed causal DAGs, logistic regression, bootstrapping, propensity
score methods, inverse probability weighting, doubly robust estimators, targeted maximum
likelihood estimation (TMLE) and mediation analyses. The objective outcome variable was the
presence of heart disease, which was treated as a binary dummy variable. Fasting blood sugar was
identified as the exposure, while age and sex were identified as confounders, and cholesterol was
identified as a mediator based on a review of recent studies. Exploratory data analyses (correlation
matrix and correlation heatmap) were done for a quick check of the nature of the relationship
between variables, which found some strong correlation between the outcome, confounders, and
some variables that were regarded as symptoms of the presence of the outcome variable. The
correlation between exposure and outcome variable was non-significant, which might be attributed
to the effect of confounders or mediator variables that need to be adjusted for. So, we explored the
causal inference method that helps to adjust for the effect these variables so that we can extract the
causal effect of treatment/exposure on the outcome variable of interest. Key outputs include causal
effect estimates, directed acyclic graphs, and sensitivity analyses to evaluate robustness. The results
of logistic regression of outcome on potential exposure variable fasting blood sugar has an
estimated log-odds ratio of 0.88 with p-value 0.723. Bayesian bootstrapping with weak priors was
done to estimate the ATE, the posterior mean of ATE was -0.0406, with 95% CI of (-0.1657,
0.0786). Propensity score methods yield causal ORs of 1.07122 with p-value 0.674 and 0.91960
with p-value 0.806 for the exposure model and outcome model respectively. TMLE was performed
using the SuperLearner and tmle packages where the estimated relative risk of treatment vs control
was 1.023, and the causal OR was 1.044, with p-value of 0.906. The results of parametric estimation
for the mediation analysis estimates that the NDE is -0.0746, with 95% CI (-0.212, 0.075), NIE is
-0.0031with 95% CI (-0.517, 0.031), TE is -0.0777 with 95% CI (-0.220, 0.067). Overall, no
significant causal effect was found on the relationship between fasting blood sugar and presence of

coronary heart disease in the Cleveland UCI heart disease dataset.
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1. Introduction

1.1. Background of the Study
Cardiovascular diseases, particularly ischemic heart disease, remain a major cause of global

morbidity and mortality. According to the Global Burden of Disease report, ischemic heart disease
has been the leading cause of death and disability globally for decades (Mensah et al., 2023) .
Studies indicated that modifiable risk factors, including smoking, hypertension, dyslipidemia,
diabetes, obesity, poor diet, and psychosocial stress, account for over 90% of the population-
attributable risk for myocardial infarction (Yusuf et al., 2004). Other cohort studies, such as
(Seeman et al., 1993) and (Tervahauta et al., 1995), have further shown that biological and
psychosocial factors significantly contribute to cardiovascular risk. All these studies establish

associations, not causation.

Association studies can be affected by confounding, selection bias, and measurement error. Modern
causal inference methods, as formalized in Pearl’s structural causal model (SCM) framework
(Austin, 2011) and epidemiological approaches discussed by Hernadn and Robins (Herndn &
Robins, 2018), enable researchers to formally express causal assumptions, identify valid adjustment
sets, and estimate causal effects under explicit assumptions. This study will therefore use the
Cleveland UCI heart-disease dataset to estimate the causal relationships between key risk factors

and CHD using robust causal inference methods.

1.2. Objectives of the Study

The primary objective of this study is to estimate the causal effects of selected modifiable risk

factors on CHD.
Specific Objectives

1. Explore different parametric and non-parametric methods of estimating the causal effect
of the exposure on the outcome adjusted for appropriate confounders.

2. Evaluate uncertainty using bootstrapping and influence-function-based inference.

3. Obtain bias adjusted treatment effect estimates using propensity score, mediation, G-

Computation, AIPTW, and TMLE.



2. Methods

We have used different graphical and numerical methods in order to achieve the intended

objectives.

2.1. Meta Data and Causal DAG
We have used Cleveland UCI heart diseases data that has 303 cases with 14 variables collected.
The list of variables and their descriptions was given in table 1.

List of all variables in the data with their descriptions were given in table 1.

Table 1: Meta data

Variable Description

Age Age in years.

Sex 1 = male, 0 = female.

Cp Chest pain type (1 = typical angina, 2 = atypical angina, 3 = non-anginal, 4 = asymptomatic).

Trestbps Resting blood pressure in mm Hg.

Chol Serum cholesterol in mg/dl.

Fbs Fasting blood sugar >120 mg/dl (1 = true, 0 = false).

Restecg Resting electrocardiographic results (0 = normal, 1 = ST-T abnormality, 2 = LV
hypertrophy).

Thalach Maximum heart rate achieved (bpm).

Exang Exercise-induced angina (1 = yes, 0 = no).

Oldpeak ST depression induced by exercise relative to rest.

Slope Slope of peak exercise ST segment (1 = upsloping, 2 = flat, 3 = downsloping).

Ca Number of major vessels (0—3) colored by fluoroscopy.

Thal Thallium stress test result (3 = normal, 6 = fixed defect, 7 = reversible defect).

Target Heart disease presence (0 = no disease, 1 = disease).

The outcome variable of interest in this study is the target(which indicated the presence or absence

of Coronary Artery Disease, CAD). The variables considered listed above include confounders,

potential risk factors, and manifestations/symptoms of the presence of CAD. The following is a

detailed discussion of the nature of the relationships present.

The variables age, sex, resting blood pressure, cholesterol level, and fasting blood sugar are widely

recognized predictors of coronary artery disease (CAD). Advancing age and male sex significantly

elevate CAD risk, as shown in large epidemiologic studies (Rodgers et al., 2019; Kim et al., 2023).

Here age and sex ¢

an be regarded as measured confounders since we cannot control them, and the

variables have no parents in the DAG. Hypertension (high blood pressure) is a major modifiable

determinant of CAD(Unger et al., 2020).




Clinically, CAD manifests through chest pain (angina), reduced exercise tolerance, abnormal
maximum heart rate response, and exercise-induced angina (Gulati et al., 2021). So, Chest can be
classified as a symptom of heart disease. Stress testing frequently reveals ischemia through ST-
segment depression or abnormal ST-segment slope, which correlate strongly with obstructive
coronary disease (Vilcant & Zeltser, 2023). The severity of CAD is reflected in the number of major
coronary vessels involved, typically assessed through coronary angiography. Resting
electrocardiographic abnormalities may indicate prior myocardial injury or active ischemia,
contributing to diagnostic evaluation and risk stratification (Shahjehan & El-Sherief, 2024). The

DAG is then constructed based on the above nature of relationships between the variables.

2.2. Do-Calculus Using Bayesian-Network
Bayesian Network (BN) was constructed in Netica to encode the assumed causal

relationships among relevant clinical variables based on the causal DAG established. The
following steps were followed to conduct the do-calculus. The node for each of the relevant
variables were created, states were created for categorical variables and continuous

variables were discretized.
The modelling steps:

1. The confounder variables age and sex were designed to have directed edges as age
— fbs, sex — fbs, age — target, and sex — target. This structure ensures that Netica
appropriately adjusts for these backdoor paths when estimating the causal effect of

fbs.

2. Chol (serum cholesterol) was modeled as a mediator of the fbs—target relationship.
Clinical evidence suggests that abnormal glucose regulation contributes to
dyslipidemia, which subsequently impacts cardiovascular risk. This mechanism
was represented by the directed pathway fbs — chol — target, while also retaining
a direct arrow fbs — target so that both direct and indirect causal effects could be

quantified.

3. Trestbps (resting blood pressure) was incorporated as effect modifier. Rather than
confounding the fbs—target relationship, these variables alter its magnitude. In a BN
framework, effect modification is implemented by allowing the conditional

distribution of the outcome to depend jointly on the exposure and the modifier.
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Therefore, trestbps was set as additional parent nodes of farget, enabling Netica to

estimate heterogeneous causal effects across levels of these variables.

After the structure was defined, the cleaned dataset was imported as a case file and Netica’s
Learn CPTs procedure was used to estimate model parameters. Continuous variables were
discretized into clinically meaningful intervals to enhance interpretability and

computational stability. The network was then compiled to enable inference.

Causal effects were estimated using Netica’s intervention (do-operator) functionality.
An intervention on fbs, denoted do(fbs = x), forces the network to simulate an active
manipulation of fbs while severing all incoming edges to fbs, thereby eliminating
confounding by age and sex. The resulting distribution P(target | do(fbs = x)) represents
the estimated causal effect of modifying fbs. Effect modification was assessed by
comparing interventional results across strata of trestbps and ca, and mediation was
examined by evaluating how the distribution of chol responds under intervention. This BN-
based methodology provides a coherent and transparent framework for causal inference
that explicitly incorporates confounding control, mediation pathways, and effect

heterogeneity.

2.3. Logistic Regression

2.3.1. Conceptual Framework and Assumptions
The aim is to find the causal effect of blood sugar (FBS) on heart attack occurrence using logistic

regression, while adjusting for confounders and accounting for potential mediators. The exposure
of interest is fbs with binary outcome target, Confounders: age, sex. Mediators: chol (serum
cholesterol), trestbps (resting blood pressure). For valid causal interpretation, the following
assumptions are invoked: (i) no unmeasured confounding of the FBS—heart attack relationship after
conditioning on age and sex; (ii) no unmeasured confounding of the FBS—mediator and mediator—
outcome relationships; (iii) correct model specification; and (iv) no substantial measurement error

in the variables.

2.3.2. Statistical Modeling
The modeling strategy is structured to: Estimate the confounder-adjusted total effect of fasting

blood sugar on heart attack and explore how adjustment for potential mediators (cholesterol and

resting blood pressure) reduces the FBS—heart attack association.



A. Confounder-Adjusted Total Effect Model (Model 1)
To estimate the total effect of exposure on Y, we fit a logistic regression model specified as:
logit[P(target = 1| fbs,age, sex)] = o + 1 * fbs + B> * age + P3 * sex 1)

Where logit(p) = lo L) . In this model, B1 represents the log-odds ratio for heart attack
g e\,

comparing individuals with (fbs = 1) to those without (fbs = 0), adjusted for age and sex. The
corresponding odds ratio for the total effect is exp (7).

B. Mediation Model Including Cholesterol and Blood Pressure (Model 2)

To assess the role of cholesterol and resting blood pressure as mediators, we extend the logistic

regression model to include chol and trestbps as additional covariates:

logit[p(y = 1|(4, C,M))] = yo + y1fbs + v age + yssex + yschol + ystestbps  (2)

Where where (A,C,M) = (fbs,age, sex, chol, trestbps)

In this expanded model, y; estimates the log-odds ratio for the direct effect of FBS on heart attack,
conditional on age, sex, cholesterol, and resting blood pressure. Under the causal assumptions,
exp (y1) can be interpreted as an approximation of the controlled direct effect of FBS on heart

attack, controlling for the mediators.

Comparing the FBS coefficient between Model 1 (f;) and Model 2 (y;) allows us to evaluate the
degree of weakening in the association after accounting for the mediators. A substantial reduction
in the magnitude of the FBS odds ratio when mediators are included would be consistent with some

of the total effect being transmitted through cholesterol and/or blood pressure.
C. Model Fitting and Estimation

Models will be estimated using maximum likelihood estimation. The primary parameter of interest

is the odds ratio for FBS:

e In Model 1: OR;yrq; = exp (B1) , interpreted as the odds ratio for heart attack for individuals
with elevated FBS vs. normal FBS, adjusted only for confounders.

e InModel 2: ORgjrect = €xp (y1), interpreted as the odds ratio for heart attack associated with
elevated FBS after controlling for both confounders and mediators.

2.3.3. Assessment of Model Assumptions and Diagnostics

6



Several diagnostics will be performed to assess model adequacy and assumptions:

e  Multicollinearity: Variance inflation factors (VIFs) or correlation matrices will be examined
to identify potential multicollinearity between predictors, especially between chol and trestbps
or between age and the mediators.

e Goodness-of-fit: Overall model fit will be evaluated using measures such as the Hosmer—
Lemeshow test and pseudo R-squared statistics. ROC curve was used to evaluate the

predictive performance of the model.

2.4. Bootstrap-A Bayesian Approach
The primary causal question is: what is the effect of (fbs) on the probability of having a heart attack,

adjusting for confounders, and considering potential mediators, after assuming weak priors on the
parameters? The variable definitions are as before, and the nature of relationship declared in logistic
regression were also adopted here. The core idea is to build a Bayesian logistic regression in Stan,
apply nonparametric bootstrapping at the data level, and for each bootstrap sample fit the same
Stan model. Causal effects (e.g., average treatment effect of fbs on the probability of heart attack)
are then computed from the posterior draws for each bootstrap replicate. Finally, ShinyStan is used

to explore and diagnose each Stan fit.

Assumptions for valid inference. Consistency, Positivity, Conditional exchangeability are

assumed.

2.4.1. The Model

The core statistical model for the outcome is a Bayesian logistic regression linking the log-odds of
heart attack to fbs, age, sex, chol, and trestbps. For subjecti =1, ..., N, the model can be written

as:
logit(P(Yi = 1)) =a+ ,bes * fbsi + .Bageagei + .Bsex * Sex; + .Bchol * ChOli + :Btrestbps * treStbpSi

with Y; modeled as a Bernoulli random variable with probability given by the inverse-logit of the
linear predictor. Weakly informative (Normal) priors are placed on the intercept and regression
coefficients. The structure in stan contains: Data: number of observations N; binary outcome y;
binary exposure fbs; continuous age, chol, trestbps; binary sex. Parameters:
&, Brvs>Bage Bsex Benots Berestbps- Model block: specification of the logistic regression and
priors. This model provides posterior draws for all regression coefficients, from which we can

compute causal contrasts on different scales (risk difference, risk ratio, or odds ratio).



2.4.2. The Bootstrap Framework
The bootstrap layer is applied outside Stan at the data level. The steps are:

1. Start with the original dataset containing Y, exposure, confounders and mediators.
2. For each bootstrap replicate b= 1, ..., B:

e Draw a bootstrap sample by sampling N rows from the original dataset with
replacement.

. Construct the list of data inputs required by the Stan model (y, fbs, age, sex, chol,
trestbps, and N).

o  Fit the Stan model to this bootstrap dataset using rstan, obtaining posterior draws for
all parameters.

. From the posterior draws, compute a summary measure of the causal effect of
interest (for example, the average treatment effect of fbs on the probability of heart
attack).

3. Aggregate the estimates across bootstrap replicates: store one causal effect estimate per
bootstrap sample (or store full posterior summaries for each replicate), and then compute

bootstrap means, standard deviations, and confidence or credible intervals.

2.4.3. Computation of the Average Treatment Effect
A natural estimand in this setting is the average treatment effect (ATE) on the risk scale, defined

as the average difference in the probability of heart attack if all individuals were set to tbs = 1
versus if all individuals were set to tbs = (0, averaging over the empirical distribution of covariates

in the dataset. Using posterior draws from Stan:

For each posterior draw of a, Brps.Bages Bsexs Behots Berestbps), compute two sets of predicted
probabilities for each individual.
e P(1);: predicted probability of ¥; = 1 if fbs_i were set to 1, holding age, sex, chol, and
trestbps at their observed values.
e P(0); : predicted probability of Y; = 1 if fbs i were set to 0, again holding other variables
at their observed values.
1. For each draw, compute the individual-level differences P(1); — P(0);: and average them
over all individuals to obtain a draw-specific ATE on the probability scale.
2. Repeat over all posterior draws and summarize the distribution (posterior mean, median, and

credible interval).



Within each bootstrap sample, this yields a posterior distribution for the ATE. The mean or median
of this posterior can be taken as the ATE estimate for that particular bootstrap replicate. Across B
bootstrap samples, the B ATE estimates provide a bootstrap distribution that reflects both sampling
variability (through resampling) and model-based uncertainty (through the posterior).

2.5. Propensity score methods

2.5.1. Theory

Most causal data science methods adjust a treatment effect with the set of sufficient confounders,
however in the case of many confounders, it may be helpful to simplify these into one single
confounder. In fact, if a set of sufficient confounders exists, then the univariate propensity score
must also be a sufficient confounder. While this property holds exactly for a known function of the
confounders, it will approximately hold for estimated parameters of the confounders, most
commonly done with logistic regression. These propensity scores estimate an individual’s
probability of receiving the treatment based on the set of sufficient confounders. The propensity
scores can then used as an ordinary confounder, to match treated and untreated individuals, or to

standardize in the exposure model.

2.5.2. Computation
As with all other methods, we assume the following variable notations: Treatment: A = fbs;

Outcome: Y = target; Confounders: W = (age, sex).

Using a logistic regression of logit(P(A = 1)) = [y + Brage + P,sex to obtain fitted values
for the propensity scores, e(W). To check the positivity assumption, look at the densities of the
propensity scores for the treated and untreated groups. A high density near 0 or 1 that is

unaccompanied by the other group could be a positivity violation.
A. Standardization with exposure modeling

Using the propensity score, (W), the observations can be weighted. This makes the adjustment
that including the confounders would have had, weighting observations to equate the distributions

of confounders among the treated and untreated groups, using only the propensity score.
B. Propensity scores in the outcome model

In the outcome model, the propensity scores themselves are used in a model in direct substitution

of the set of sufficient confounders, along with the treatment. Because of our data’s binary target



variable, the outcome model used was a logistic regression of logit(P(Y = 1)) = Bo + [1fbs +
Bae(W).

C. Matching on propensity score

One final application of the propensity score method is matching. In traditional matching, a
researcher might attempt to match each treated individual to one or more untreated individuals with
the same confounders. If the number of confounders is large, this may not be possible, and we
match on propensity score instead of the entire set of confounders. Matching provides an intuitable

strategy to compare treated and untreated groups and can be used with propensity score.

2.6. ATE, G-computation, AIPTW, and TMLE

2.6.1. Computational Procedures

Variable notations: Treatment: A = fbs (1 = high fasting blood sugar, 0 = normal); Outcome: Y

= target (1 = heart disease present, 0 = none); Confounders: W = (age, sex).

1. Average Treatment Effect (ATE)

Define potential outcomes: Y1: outcome if everyone had fbs = 1, Y0: outcome if everyone had

fbs = 0. Then the ATE is: ATE = E[Y; — Yp]

Under identification assumptions (consistency, exchangeability given W, positivity), this equals:
ATE = Ey[E[Y | A= 1, W] —E[Y | A= 0,W]]. In our dataset: E[Y | A = a, W] is the
predicted probability of heart disease (target=1) for a given age, sex if fbs = a.
2. G-computation (G-formula)
The G-formula version of the ATE is:
ZZP(Y —ylA=1,W = w)P(W = w) —Zzp(y — YA =0,W = w)P(W = w)
w y w 'y

In our setting, conceptually we are going to:

e Fitan outcome model Q(a,w) = E[Y | A = a, W = w] using target as outcome and

predictors fbs, age, sex.

e Average predicted differences across the empirical distribution of age, sex in the sample.

10



Empirical (sample) G-computation estimator: ATEG_comp = % ?:1{6(1, w;,) - 0(0, Wl-)}.

Where:

e  Q(1,W,) is the predicted probability of target=1 if individual i had fbs=1 given their
age i, sex_i. and Q(0, W;) is the analogous prediction for fbs=0.
3. AIPTW (Augmented Inverse Probability of Treatment Weighting)
Define: Outcome regression: Q(a,w) = E[Y | A = a, W = w] and Propensity score: g(a | w) =
P(A =a| W = w) and in our dataset: g(1 | W) = P(fbs = 1| age,sex) and g(0 | W) =1 —
g | W). The AIPTW estimator of the ATE is:

ATE e = 22 [(14: = 13/801 1) (% = QL W0) + QL W) - (1¢4: = 03/gC0 1 W) (¥
00, W) + A0, W))|
Intuition in our context:

o Theterms I{A; = a}/g(a | W;) (Yi - Q(a, Wl-)) are “residuals” reweighted by inverse
probability of treatment.
e The Q(a, W;) parts are the G-computation predictions.

o Combining them yields a doubly robust estimator: consistent if either the propensity

model or the outcome model is correctly specified.

4. TMLE (Targeted Maximum Likelihood Estimation) for the ATE

TMLE uses the same equations:

e (Q(a,w): outcome regression and g(a | w): propensity score

The targeted estimates are obtained as: ATEqy g = % i=1{@*(1, w;) — 0*(o, Wi)}
[y, o' awy|[1-23L, 0" (ow))]
[1—23n, 0*wp]|[ZEL, 6*(ow))]

And: MORTMLE =

o Like in AIPTW, these estimators are also doubly robust.

11



2.7. Mediation Analysis

2.7.1. Motivations and Reasoning

Examining the DAG, it can be seen that there is one mediator variable, cholesterol, between the
treatment(fbs) and outcome(target). Thus, mediation analysis must be conducted to determine the
effect, if any, of the cholesterol level on the target variable. Three major confounders are considered
in the analysis due to their interactions with fbs, cholesterol, and target. Age, a confounder on fbs
and target, sex, a confounder on fbs and cholesterol, and ca, a confounder on cholesterol and the

target variable. Since the study was not randomized, all three confounders must be considered.

The mediation analysis conducted is the natural linear parametric model. A natural parametric
model was used as the mediator is not a variable that is manually set and there may be possible
treatment-mediator interactions. This model assumes that all confounding between the three

variables has been identified and adjusted.

2.7.2. Model Specifications

Model terms: Y = Outcome(target),A = treatment(fbs),M = mediator(chol),H =
confounders(age, sex, ca), M(a) = potential outcome of the mediator M to assigning treatment
A = a,Y(a,m) = potential outcome for the outcomeY to assigning treatment A =

a and mediator M = m.

Assumptions: (i) Y(a,m) L1 A|H, (ii). Y(a,m) LL M|H, A, (iii)) M(a) LL A|H, (iv)
Y(a,m) LL M(a)|H.

Models

Natural direct effect(NDE): NDE(a,a x; a*) = (B1+ B3(a0+ ala+ a2TE(H)))(a—a*)
Natural indirect effect(NIE): NIE(a,a *;a) = (Bya; + B3a1)(a — a *)

Total effect(TE): TE = NDE + NIE

Nonparametric bootstrapping of the results of NIE, NDE, and TE will be conducted to verify the
validity of findings.

12



3. Results

3.1. Causal DAG and data exploration
The causal DAG was produced based on the review of literatures from previous studies using

DAGitty, online version, and the result was given in figure 1

- -@
Trestb Réstécg
/ ® ~O

Slope Thal

/4> A
(S

T F .'v ' -‘.

A /X
S 4/
c
Fbs ‘
Oldpeak 2

Exang

Thalach

Chol

Sex

Figure 1: The DAG

Based on the DAG and review of the literature, we identified fbs as the exposure, age and sex to be

confounders, cholesterol as a mediator, trestbps as an effect modifier, and target to be the outcome.

The correlation matrix and correlation matrix heatmap plot were used to understand the nature of
relationship between variables, and check the validity of the initial DAGs, before proceeding to
further analysis. From the result we can see that the outcome variable has non-negligible
relationship with all variables included in the study, but the direction of relationship cannot be

determined from the correlation analysis.
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Correlation Heatmap of Heart Disease Variables variables Corr
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Figure 22: Exploratory Data analysis
Numerical summary of target and exposure variable combination
Exposure (fbs = a) 0 258 0.8515
Exposure (fbs = a) 1 45 0.1485
Outcome (y) 0 164 0.5413
Outcome (y) 1 139 0.4587
Crude Association fbs=0,y=0 141 0.5465
Crude Association fbs=0,y=1 117 0.4535
Crude Association fbs=1,y=0 23 0.5111
Crude Association fos=1,y=1 22 0.4889

From the above results we see that the exposure-outcome variable combination is moderately

balanced, so there is no extreme or unexpected outcome because of the imbalance exposure-

outcome combination.
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3.2. Results of Do-Calculus with Netica
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P(Y = 1|fbs = 1) = 0.495 and

P(Y =1|fbs =0) = 0.465 = ATE = 0.495 — 0.465 = 0.03
So, from the results we see that the RD or ATE was 0.03 whereas the RR =1.0667 and

OR=1.1277. Other details were omitted just to minimize the volume of our reports.

3.3. Results of Logistic regression
The results of fitting logistic regression to the data are given in table 2 below. The results indicate

that the null deviance is very high as compared to the residual deviance, indicating that the
treatment and confounders had done better in controlling the variability in Y, indicating the overall
logistic regression model is better than the null model. The dispersion parameter was also found to
be 1, indicating that there is no problem of overdispersion. The estimate of the coefficient of the
treatment effect 8; = 0.884 , with p-value of 0.723, suggesting that f; is nonsignificant, there
is no significant effect of treatment on the outcome. Further, the analysis has revealed that the effect
of both cofounders is significant. The result of model 2 indicates that the effects of mediator are
nonsignificant at 5% level of significance but there was no significant change in the estimate of 8,
between the two models. We further checked the presence of multicollinearity using VIF and the
result indicated that there was no problem of multicollinearity in the data set. The ROC procedure

also revealed that the area under the curve is 0.7277 (the model is fair).

Table 2 Logistic regression output for model 1

Term Estimate std.error Statistic p.value 95% confidence Interval
(Intercept) 0.008 0.900 -5.363 0.000 0.001 0.044
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fbs>120 0.884 0.347 -0.355 0.723 0.445 1.747
Age 1.069 0.015 4.437 0.000 1.038 1.101
sexMale 4.506 0.290 5.187 0.000 2.588 8.100

Model diagnostics results

(Dispersion parameter for binomial family taken to be 1) Null deviance: 417.98 on 302
df: Residual deviance: 372.18 on 299 df: AIC: 380.18

Goodness of fit test

Sum of squared errors Expected value|He SD z P
64.8367953 64.5614450 0.2570878 1.0710362 ©0.2841532

Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.109580
Cox and Snell (ML) 0.140292
Nagelkerke (Cragg and Uhler) 0.187484

Likelihood.ratio.test stat=45.802 pvalue=6.2477e-10

Table 3 Logistic Regression of outcome on exposure adjusted for confounders and mediator

Term Estimate Std.error Statistic P-value 95% CI
(Intercept) 0.001 1.393 -5.377 0.000 0.000 0.008
Fbs>120 0.808 0.353 -0.605 0.545 0.401 1.613
Age 1.058 0.016 3.623 0.000 1.027 1.092
Sexmale 5.412 0.309 5.465 0.000 3.008 10.138
trestbps 1.015 0.008 1.926 0.054 1.000 1.031
Chol 1.005 0.003 1.787 0.074 1.000 1.010
FBS AGE SEX CHOL TRESTBPS
VIF 1.04 1.14 1.18 1.11 1.11

Null deviance: 417.98 on 302 degrees of freedom: Residual deviance: 364.70 on
297 degrees of freedom: AIC: 376.7

The logistic regression model at hand is then checked for its overall significance and then for its
goodness of fit to the data and the results of all these procedures are given below table 2. From the
result we can see that the logistic regression is significantly different from the null model, see also
the Pseudo R square values which are fairly different from zero. We further did chi square goodness
of fit test, with the result indicating that the test statistic is 1.0710362 with p-value of 0.2841532,
suggesting that we do not have evidence against the null hypothesis. So, it is reasonable to fit

logistic regression to model the data.
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ROC Curve for Model 2
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Figure 3:ROC of Logistic Regression Model

3.4. Bootstrap estimation procedure
The parameter estimate of the bootstrap procedure from simulation in stan was given in table 6.

The result indicates that the posterior estimate of 8,4 was -0.19 with posterior high-density credible

interval of (-0.91,0.51) with effective sample size of 3024 and Rhat was 1.

Table 4 Posterior summary from Bayesian bootstrap of logistic regression parameters

Parameter Mean se_mean Sd 25% 25% 50% 75% 97.5% n_eff Rhat
Alpha -7.01 0.03 134 -9.70 -793 -696 -6.08 -4.46 1792 1
beta_A -0.19 0.01 036 -091 -0.44 -0.20 0.05 0.50 3024 1
beta_age 0.05 0.00 0.02 0.02 0.04 0.05 0.06 0.09 2096 1
beta_sex 1.64 0.01 030 1.08 144 164 185 222 2649 1
beta_chol 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 4364 1
beta_trestbps 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.03 2403 1

Samples were drawn using NUTS(diag_e) at Sun Nov 23 16:07:42 2025. For each parameter, n_effis a
crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1). Bootstrap ATE:
the posterior estimate: Mean =-0.0406, SD = 0.0728,95%

CI = [-0.1657, 0.0786], total computation time 1.578047 hours

Posterior distribution of beta_l, details can be provided.

The sign of estimate of 4 negative indicates that treatment (increased fasting blood sugar level)
has indirect effect on the risk of heart disease. The confidence interval includes 0, indicating that
the effect is statistically nonsignificant. The Rhat value of 1 indicates that simulation chain has
converged. Finally, we observe from the result that the posterior estimate of the treatment effect
ATE has mean of -0.0406, SD = 0.0728 with 95% credible interval of [—0.1657,0.0786],indicating

the ATE under Bayesian modelling is also nonsignificant.
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Lines are mean (solid) and median (dashed) Bootstrap distribution of ATE (posterior means)
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Figure 4: Posterior density of distribution of 84 and ATE

3.5. Propensity Score Methods Results
The plots of propensity scores of treated and untreated groups were estimated using logistic

regression, and given in figure 5. Because the density of the scores is not high near 0 or 1, the

positivity assumption holds.

— fbs=1

density
3
|

propensity score

Figure S: Density plot of propensity scores of treated and untreated groups

Logistic regression was used as described in the methodology, the exposure model is a weighted
logistic regression with weights derived from propensity scores, and the outcome model is a logistic

regression with fbs and the propensity scores. The table below shows the results for the weighted
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exposure model and outcome model. Both models show a causal OR near 1, and neither show a

significant causal effect of high fasting blood sugar on heart disease.

Model OR Estimate SE Z Value P Value Significance
Exposure | 1.07122 0.06880 0.1636 0.421 0.674 Not
Outcome  0.91960 -0.08382 0.3408 -0.246 0.806 Not

Using the “Matching” R package, matching was done on the basis of propensity scores, the
estimated ATT is 0.040712, with p value 0.69537, again yielding a non-significant result for the
ATT, meaning among the treated group, there was no significant causal effect of high fasting blood

sugar on heart disease.

3.6. Targeted Maximum Likelihood Estimation, G-computation and AIPTW
This section summarizes the main estimated effects from the TMLE analysis of the treatment on
the outcome, including marginal means, risk differences, and relative effect measures. The

SuperLearner and tmle R packages were used to obtain these estimates.

Table 8: TMLE Estimate Effects

Quantity Estimate 95% CI (Lower, p-value
Upper)
Marginal mean under treatment (EY1) | 0.4732 0.3067, 0.6397 <0.001
Marginal mean under control (EY0) | 0.4626 0.4022, 0.5230 <0.001
Additive effect (EYI - EY0) | 0.0106 -0.1663, 0.1875 0.906
Effect among the treated | -0.0281 -0.1925, 0.1363 0.738
Effect among the controls | 0.0165 -0.1641, 0.1970 0.858
Relative risk (treatment vs. control) | 1.0229 0.7031, 1.4881 0.906
Od(ds ratio (treatment vs. control) | 1.0435 0.5131, 2.1223 0.906

The estimated average probability of the outcome if everyone received the treatment (EY1) is
approximately 47%, whereas under control (EYO0) it is about 46%. The additive treatment effect,
defined as the difference in these marginal means, is very small (0.01) and not statistically
significant (p = 0.906). This indicates no evidence that the treatment changes the overall probability
of the outcome. Subgroup-specific effects among the treated and among the controls are likewise
small and non-significant, with confidence intervals that also span zero. The relative risk (= 1.02)
and odds ratio (= 1.04) for treated versus control individuals have wide confidence intervals

including 1 and non-significant p-values, again suggesting no detectable treatment effect. Overall,
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across all effect measures (risk difference, relative risk, and odds ratio), the data do not support a

statistically significant impact of the treatment on the outcome in this sample.

The table below summarizes the results of the G-computation, AIPTW, and TMLE analyses.

Table 9: G-computation, AIPTW and TMLE

Estimator ATE Estimate  Std. Error 95% CI (Lower) 95% CI (Upper)
G-computation -0.0262 0.000315 -0.0268 -0.0255

AIPTW 0.00439 0.088 -0.168 0.177

TMLE -0.0213 0.09026 -0.161 0.118

We can see AIPTW and TMLE produce ATE estimates that are not statistically significant, as 0 is
contained within both of their confidence intervals. G-computation shows a significant effect of the
treatment on the outcome, although this effect is weak in magnitude. G-computation is not doubly
robust and can be biased under model misspecification. Therefore, we will choose to believe that

there is no ATE based on the results of this analysis.
3.7. Mediation Analysis Results

3.7.1. Parametric Linear Model

The results of the mediation analysis using the parametric linear modelling were given as NDE = -
0.075 with confidence interval of (-0.212, 0.075), NIE = -0.003 with confidence interval of (-0.517,
0.031), and finally TE = -0.078 with confidence interval of (-0.220, 0.067). Confidence intervals
are at 95% confidence and obtained through bootstrapping with 1,000 replicates. Within the context
of the study, this would imply that a higher fasting blood sugar would reduce the likelihood of a
heart disease diagnosis, which defies the initial assumptions obtained through research. These
results would mean that the total effect of a higher fasting blood sugar lowers heart disease
diagnosis by 7.76% altogether, and 7.46% without including the mediating effects of cholesterol.
Since 0 is contained in all three confidence intervals, the results of the natural direct effect of fasting
blood sugar on the target, the natural indirect effect of fasting blood sugar on the target (the effect
obtained through cholesterol), and the total effect of fasting blood sugar on the target are
inconclusive. It cannot be determined how much of an effect cholesterol has as a mediator on the
effect of fasting blood sugar on heart disease. These results reflect the results obtained in the TMLE,
G-computation, and AIPTW analyses in which no average treatment effect of fbs on target was

found.
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4. Conclusion
In this study, we have tried to establish causal relationship between heart disease and fasting

blood sugar, adjusting for covariates and mediators in the Cleveland UCI heart disease data.
Both graphical and numerical causal data analyses methods were used to establish the
relationship. Dagitty and a correlation heatmap were used as graphical method of constructing
causal relationships. Different causal data analysis methodologies were used, and the following

results were obtained.

The logistic regression of the outcome (heart disease) on the exposure (fasting blood sugar)
adjusted for confounders and mediators were fitted, and the model was checked for its
goodness and validities of the assumption for logistic regression and the result has revealed
that the model fit to the data well but the effect the exposure on the outcome was found to be
non-significant.

The bootstrap estimate of the average treatment was done under the Bayesian set up, by
imposing weak priors on the coefficient to obtain the prior estimate of the average treatment
effect with its credible interval, and the posterior summary of regression coefficient. The
results have indicated that the posterior estimate of ATE was not significantly different from
zero and the posterior mean of the treatment effect adjusted for the covariate was also not
significantly different from zero.

Propensity score methods were used in the exposure model, outcome model and matching.
Density of propensity score validate the positivity assumption. The weighted logistic
regression exposure model estimates an OR greater than 1, but insignificant. The logistic
regression outcome model estimates an OR less than 1, but insignificant. The matching
method estimates a positive, but insignificant ATT. All three suggest the causal relationship
of high fasting blood sugar on the presence of heart disease is not significant.

TMLE, AIPTW, and G-Computation were run to estimate the average treatment effect of fbs
on heart disease, adjusting for confounders of age and sex. For TMLE, it was found that both
the additive effect and the odds ratio were non-significant. Also, the AIPTW estimate of the
ATE was found to not be statistically significant. G-computation was significant, but this
was disregarded as being a biased estimate due to model misspecification.

Mediation analysis did not prove cholesterol to have any significant mediation effect between
fasting blood sugar and the diagnosis of heart disease. Using the parametric linear model,
insignificant results were found with the confidence interval for the normal indirect effect

containing 0. It cannot be reasonably assumed that cholesterol has any mediation effect.
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Appendix: R code used in the study
The following the main component of R code used in this project knitted from Rmakdown

to word.

Causal Effect of Fasting Blood Sugar on Heart Attack

Group 3

Introduction

This report implements a logistic regression analysis to estimate the causal effect of fasting blood sugar (FBS) on
heart attack (any heart disease) using the Cleveland UCI heart dataset. We fit two main models:

e Model 1: Adjusts for age and sex (total effect of FBS, conditional on these confounders).
e Model 2: Additionally adjusts for cholesterol and resting blood pressure (direct effect of FBS, controlling
for potential mediators).

We present odds ratios and confidence intervals using knitr: :kable () to create publication-ready tables.

Data Import

heart raw <- readr::read csv("C:/Users/16673/OneDrive - University of Missouri/
Fall 2025/Causal Inference/Project/Heart disease cleveland new(in).csv", show c
ol types = FALSE)

heart raw %>%
head () %>%
kable (caption = "Head of raw Cleveland dataset") %>%

kable styling(full width = FALSE)

Head of raw Cleveland dataset

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

63 1 0 145 233 1 2 150 0 23 20 2 0
67 1 3 160 286 0 2 108 1 15 1 3 1 1
67 1 3 120 229 0 2 129 1 2.6 1 2 3 1
37 1 2 130 250 0 0 187 0 3.5 20 1 0
41 0 1 130 204 0 2 172 0 1.4 0 0 1 0
56 1 1 120 236 0 0 178 0 0.8 0 0 1 0

Variable Definitions and Data Preparation
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heart <- heart raw %>%
mutate (
# Outcome: binary indicator of any heart disease
target = ifelse(target > 0, 1, 0),

target = factor(target, levels = c(0, 1), labels = c("No disease",
")),

# Exposure: FBS > 120 mg/dl (assumes original fbs is 0/1)

fbs = factor (fbs, levels = c(0, 1), labels = c("<=120", ">120")),

# Sex: 0 = female, 1 = male

sex = factor (sex, levels = c(0, 1), labels = c("Female", "Male"))
# Keep complete cases for variables used in the main models
heart cc <- heart %>%

select (target, fbs, age, sex, chol, trestbps) %>%

kable (caption = "Head of analysis dataset (complete cases)") %>%

kable styling(full width = FALSE)

Head of analysis dataset (complete cases)

target fbs age sex chol
No disease >120 63 Male 233
Disease <=120 67 = Male 286
Disease <=120 67 = Male 229
No disease <=120 37 ' Male 250
No disease <=120 41 | Female 204
No disease <=120 56 = Male 236

Descriptive Statistics

# Summary of key variables
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summary table <- heart cc %>%
summarise (
n =n(),
mean age = mean(age),
sd_age = sd(age),
mean chol = mean (chol),
sd chol = sd(chol),
mean trestbps = mean (trestbps),

sd trestbps = sd(trestbps)

oo

>

oo

)

oo

t() %>

as.data.frame () %>%

rownames to column(var = "Statistic")
kable (summary table, col.names = c("Statistic", "Value"),
caption = "Basic descriptive statistics") $%>%

kable styling(full width = FALSE)

Basic descriptive statistics

Statistic Value
n 303.000000
mean_age 54.438944
sd_age 9.038662
mean_chol 246.693069
sd_chol 51.776918
mean_trestbps 131.689769
sd_trestbps 17.599748

# Cross-tabulations
ftable fbs target <- table (heart cc$fbs, heart cc$target)

ftable fbs target 3%>%

oe

as.data.frame () %>
pivot wider (names from = Var2, values from = Freq) %>%

kable (caption = "FBS by heart disease status") %>%
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kable styling(full width = FALSE)

FBS by heart disease status

Varl No disease Disease
<=120 141 117
>120 23 22

Model 1: Total Effect of FBS (Adjusted for Age and Sex)

modell <- glm(target ~ fbs + age + sex,

data = heart cc,family = binomial)

# Goodness of fit test

library (rms)

lrm model <- lrm(target ~ fbs + age + sex, data = heart cc,x = TRUE, y = TRUE)

residuals (lrm model, "gof")

##
##
##
##

Sum of squared errors Expected value|HO SD
64.8367953 64.5614450 0.2570878

Z P

1.0710362 0.2841532

library (rcompanion)

nagelkerke (modell)

##
##
##
##
##
##
##
##
##
##
##
##

SModels

Model: "glm, target ~ fbs + age + sex, binomial, heart cc"

Null: "glm, target ~ 1, binomial, heart cc"

$Pseudo.R.squared.for.model.vs.null

Pseudo.R.squared
McFadden 0.109580
Cox and Snell (ML) 0.140292
Nagelkerke (Cragg and Uhler) 0.187484
SLikelihood.ratio.test
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## Df.diff LogLik.diff

## =3

# SNumber.of.observations

## Model: 303
## Null: 303

## SMessages

## [1] "Note: For models fit with REML,

with ML"
#4#
## SWarnings

## [1] "None"

# Odds ratios and 95% CIs

modell or <- tidy(modell,

kable (modell or,digits

caption =
sex (odds ratios)")

kable styling(full width

"Model

a9
>%

1:

p.value

-22.901 45.802 6.2477e-10

conf.int

FALSE)

exponentiate

Model 1: Logistic regression of heart disease on FBS, age, and sex (odds ratios)

term

(Intercept)

fbs>120

age

sexMale

Model 2: Direct Effect of FBS (Adjusted for Age, Sex, Cholesterol, and Resting BP)

model2 <- glm(target ~ fbs + age + sex + chol + trestbps,

data

summary (model?2)
#4
## Call:

## glm(formula

estimate

0.008

0.884

1.069

4.506

heart cc,

std.error

0.900

0.347

0.015

0.290

family

p-value

0.000

0.723

0.000

0.000

target ~ fbs + age + sex + chol + trestbps,

Logistic regression of heart disease on FBS,

conf.low

0.001

0.445

1.038

2.588

family

these statistics are based on refitting

and

conf.high

0.044

1.747

1.101

8.100

binomial,



## data = heart cc)

##

## Coefficients:

#4 Estimate Std. Error z value Pr(>|z])

## (Intercept) -7.489660 1.392869 -5.377 7.57e-08 ***

## £bs>120 -0.213751  0.353462 =-0.605 0.545356

# age 0.056500  0.015595  3.623 0.000291 ***

## sexMale 1.688617  0.309006  5.465 4.64e-08 ***

## chol 0.004533  0.002536  1.787 0.073923

## trestbps 0.014849  0.007711  1.926 0.054131

b -

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 417.98 on 302 degrees of freedom
## Residual deviance: 364.70 on 297 degrees of freedom
## AIC: 376.7

##

## Number of Fisher Scoring iterations: 3

library (rcompanion)

nagelkerke (model?2)

## SModels

##

## Model: "glm, target ~ fbs + age + sex + chol + trestbps, binomial, heart cc"
## Null: "glm, target ~ 1, binomial, heart cc"

##

## SPseudo.R.squared.for.model.vs.null

## Pseudo.R.squared
## McFadden 0.127467
## Cox and Snell (ML) 0.161247
## Nagelkerke (Cragg and Uhler) 0.215487
##

## S$Likelihood.ratio.test

## Df.diff LogLik.diff Chisg p.value
## =5 -26.64 53.279 2.9476e-10
##
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## SNumber.of.observations
##

## Model: 303

## Null: 303

##

## SMessages

## [1] "Note: For models fit with REML,

with ML"
#4#
## SWarnings

## [1] "None"

these statistics are based on refitting

model2 or <- tidy(model2, conf.int = TRUE, exponentiate TRUE)
kable (model2 or,digits = 3,
caption = "Model 2: Logistic regression adding cholesterol and resting BP
(odds ratios)") %>%
kable styling(full width = FALSE)
Model 2: Logistic regression adding cholesterol and resting BP (odds ratios)
term estimate std.error statistic p.value conf.low conf. high
(Intercept) 0.001 1.393 -5.377 0.000 0.000 0.008
fbs>120 0.808 0.353 -0.605 0.545 0.401 1.613
age 1.058 0.016 3.623 0.000 1.027 1.092
sexMale 5.412 0.309 5.465 0.000 3.008 10.138
chol 1.005 0.003 1.787 0.074 1.000 1.010
trestbps 1.015 0.008 1.926 0.054 1.000 1.031
Comparison of FBS Effect Across Models
comparison <- bind rows (
modell or %>% mutate (model = "Model 1"),
model2 or %>% mutate (model = "Model 2")

oe

>

oe

)

filter (term == "fbs>120")

o o
5>%
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select (model, estimate, conf.low, conf.high, p.value)

kable (comparison,
digits = 3,
caption = "Comparison of FBS effect between Model 1 and Model 2") $%>%

kable styling(full width = FALSE)

Comparison of FBS effect between Model 1 and Model 2

model estimate conf.low conf high p.value
Model 1 0.884 0.445 1.747 0.723
Model 2 0.808 0.401 1.613 0.545

Model Diagnostics

# Hosmer-Lemeshow test for Model 2
hl model2 <- ResourceSelection::hoslem.test (

X = as.numeric(heart_cc$target) = 1,

% fitted(model2), g = 10)

hl model2

##

## Hosmer and Lemeshow goodness of fit (GOF) test

##

## data: as.numeric(heart ccStarget) - 1, fitted(model2)
## X-squared = 9.1613, df = 8, p-value = 0.3289

# VIF for multicollinearity

vif vals <- car::vif (model2)

vif df <- tibble(

term = names(vif vals),

VIF = as.numeric(vif vals))

kable (vif df, digits = 2, caption = "Variance inflation factors (Model 2)") 3%>%

kable styling(full width = FALSE)
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Variance inflation factors (Model 2)

term

age
sex
chol

trestbps

# ROC curve and AUC for Model 2

roc obj <- pROC::roc (heart ccS$target, fitted(model2))
auc_val <- pROC::auc(roc_obj)

auc_val

## Area under the curve: 0.7277

plot (roc obj, col = "steelblue", main = "ROC Curve for Model 2")

ROC Curve for Model 2

1.0

0.8

Sensitivity
0.6

0.4

0.2

0.0
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Specificity

Interpretation

VIF

1.04

In Model 1, which adjusts only for age and sex, the odds ratio for FBS>120 represents the total effect of elevated

fasting blood sugar on the odds of heart disease, conditional on these confounders.
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Mediation using Package

# R mediation script for Cleveland heart data

# Assumes: heart cc data.frame with columns fbs, chol, trestbps, age, sex, targ
et

i === Packagrs ———-cecscesscessmee s e e e e e e e s e s oe

if (!requireNamespace ("mediation", quietly=TRUE)) install.packages ("mediation")
if (!requireNamespace ("boot", quietly=TRUE)) install.packages ("boot")

if (!'requireNamespace ("dplyr", quietly=TRUE)) install.packages ("dplyr")

library (mediation)

library (boot)

library(dplyr)

# --- Quick data checks ---------"-"--------————

# Drop obvious missing rows for this demonstration (or use multiple imputation
separately)

#heart cc cc <- heart cc# %>% drop na(fbs, chol, trestbps, age, sex, target)

# ———- 1) Fit mediator models (two linear models, one per mediator) ------------

med chol <- Im(chol ~ fbs + age + sex, data = heart cc)

med tbp <- Im(trestbps ~ fbs + age + sex, data = heart cc)

summary (med chol)

##

## Call:

## lm(formula = chol ~ fbs + age + sex, data = heart cc)
##

## Residuals:

## Min 190 Median 3Q Max

## -129.62 -33.68 -4.29 28.74 289.78

##

## Coefficients:

## Estimate Std. Error t wvalue Pr(>|t])
## (Intercept) 200.6083 18.5762 10.799 < 2e-16 ***
## fbs>120 -0.6148 8.1518 -0.075 0.939934
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## age 1.0987 0.3224 3.408 0.000745 #***

## sexMale -20.0553 6.1994 -3.235 0.001353 **

#+ —-—-

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 50.01 on 299 degrees of freedom

## Multiple R-squared: 0.07622, Adjusted R-squared: 0.06695
## F-statistic: 8.223 on 3 and 299 DF, p-value: 2.825e-05
summary (med tbp)

##

## Call:

## 1lm(formula = trestbps ~ fbs + age + sex, data = heart cc)

##

## Residuals:

## Min 190 Median 30 Max

## -37.505 -10.864 -1.376 10.265 62.161

##

## Coefficients:

#4 Estimate Std. Error t value Pr(>|t])

## (Intercept) 103.8960 6.2201 16.703 < 2e-16 ***

## fbs>120 7.2308 2.7296 2.649 0.0085 **

## age 0.5124 0.1080 4.746 3.22e-06 ***

## sexMale -1.7247 2.0758 -0.831 0.4067

##H ——-

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1
##

## Residual standard error: 16.75 on 299 degrees of freedom

## Multiple R-squared: 0.1036, Adjusted R-squared: 0.0946

## F-statistic: 11.52 on 3 and 299 DF, p-value: 3.633e-07

# -——— 2)
iator

Fit outcome model (binary outcome).

# We use a logistic regression for target.
bs*trestbps.

Include interactions with each med

Include product terms fbs*chol and £

outcome model <- glm(target ~ fbs * chol + fbs * trestbps + age + sex,

family = binomial, data =

summary (outcome model)
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##

## Call:

## glm(formula = target ~ fbs * chol + fbs * trestbps + age + sex,
#4 family = binomial, data = heart cc)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z])
## (Intercept) -7.002047 1.455579 -4.810 1.51e-06 ***
## fbs>120 -4.977487 3.275178 -1.520 0.128571
## chol 0.003206 0.002704 1.186 0.235772
## trestbps 0.012456 0.008617 1.445 0.148325
## age 0.058435 0.015667 3,730 0.0001L92 =¥
## sexMale 1.755474 0.313735 5.595 2.20e-08 ***
## fbs>120:chol 0.011121 0.007504 1.482 0.138342

## fbs>120:trestbps 0.014677 0.019165 0.766 0.443785

##H ——-

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " " 1
##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 417.98 on 302 degrees of freedom

## Residual deviance: 361.69 on 295 degrees of freedom

## AIC: 377.69

##

## Number of Fisher Scoring iterations: 4

# Option A: Single-mediator mediation analysis using the 'mediation' package
# (run separately for chol and for trestbps). This estimates NIE and NDE on the

# outcome scale chosen by model (here logistic -> effects interpreted on probab
ility scale

# via averaging / quasi-Bayesian sims done by 'mediate').
#

# NOTE: mediation::mediate supports one mediator at a time.

# For mediator = chol

set.seed (2025)
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outcome model, #

med out chol <- mediate (model.m = med chol,
model.y =

ediator)
treat = "fbs",
mediator = "chol",
boot = TRUE, sims =

summary (med out chol)

##

## Causal Mediation Analysis
##

##

##

##

## ACME (control)

## ACME (treated)

## ADE (control)

## ADE (treated)

## Total Effect

## Prop. Mediated (control)
## Prop. Mediated (treated)
## ACME (average)

## ADE (average)

## Prop. Mediated (average)

##
##

Sample Size Used: 303

Simulations: 1000

plot (med out chol)

Estimate 95%

.00041033

.00167265

.04661810

.04788041

.04829074

.00849711

.03463699

.00104149

.04724925

.02156705
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#
#

1000) # sims

Nonparametric Bootstrap Confidence Intervals with the

CI Lower 95%

.01705061 0
.05677866 0
.19727308 0
.19783817 0
.19870211 0
.61115050 0
.38110791 3
.03353458 0
.19753319 0
.51098649 1

outcome model

mediator model

(must include m

exposure

mediator name

for CIs

Percentile Method

CI Upper p-value

.01270288 0.878
.03934362 0.852
.09104368 0.472
.08660507 0.432
.08905021 0.424
.63561151 0.814
.30702741 0.804
.02465882 0.864
.08974822 0.462
.84356713 0.804



ACME — r

Effect

#
se

me

su
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ADE 1 r S

Total

T T I I I |
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

For mediator = trestbps
t.seed (2025)

d out tbp <- mediate (model.

S
Il

med tbp,
model.y = outcome model,
treat = "fbs",

mediator = "trestbps",
boot = TRUE, sims = 1000)

mmary (med out tbp)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.0188068 -0.0063819 0.0563049 0.150
ACME (treated) 0.0373535 -0.0122418 0.1010035 0.166
ADE (control) -0.0547907 -0.2047943 0.0905455 0.440
ADE (treated) -0.0362439 -0.1867432 0.1112281 0.612
Total Effect -0.0174372 -0.1708257 0.1339671 0.806
Prop. Mediated (control) -1.0785458 -4.3125148 3.8268090 0.816
Prop. Mediated (treated) -2.1421788 -8.3362744 8.3771470 0.912
ACME (average) 0.0280801 -0.0017082 0.0702551 0.078
ADE (average) -0.0455173 -0.1941982 0.1017542 0.524
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## Prop. Mediated (average) -1.6103623 -6.8294023 5.9285872 0.864
## ———

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Sample Size Used: 303

## Simulations: 1000

plot (med out tbp)

ACME — _.ET'.—
ADE -| T P — T ——
Total _| 1

Effect !
T T f T
-0.2 -0.1 0.0 0.1

dat <- read.csv ("C:/Users/16673/0OneDrive - University of Missouri/Fall 2025/Cau
sal Inference/Project/Heart disease cleveland new(in) .csv")

m.mod <- glm(chol ~ fbs + age + sex + ca, data = dat)

y.mod <- glm(target ~ fbs * chol + age + sex + ca,
data = dat, family = binomial)
summary (m.mod)
##
## Call:
## glm(formula = chol ~ fbs + age + sex + ca, data = dat)
##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 207.9085 19.2992 10.773 < 2e-16 ***
## fbs -1.7194 8.1797 -0.210 0.833649
## age 0.9251 0.3460 2.674 0.007909 **
#H# sex -21.1319 6.2401 -3.386 0.000803 ***
## ca 4.5884 3.3491 1.370 0.171713
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## ——-

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 2494.049)
##

#4 Null deviance: 809616 on 302 degrees of freedom

## Residual deviance: 743227 on 298 degrees of freedom

## AIC: 3236.8

##

## Number of Fisher Scoring iterations: 2

summary (y.mod)

##

## Call:

## glm(formula = target ~ fbs * chol + age + sex + ca, family = binomial,
## data = dat)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -4.369085 1.190757 -3.669 0.000243 **x*

## fbs -2.311391  1.956916 ~-1.181 0.237547
## chol 0.003274  0.002981  1.099 0.271956

## age 0.028222  0.017128  1.648 0.099411

## sex 1.682402  0.341785  4.922 8.55e-07 ***

## ca 1.188853  0.195514  6.081 1.20e-09 ***

## fbs:chol 0.007640 0.007764  0.984 0.325101

b -

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

#4# Null deviance: 417.98 on 302 degrees of freedom
## Residual deviance: 316.77 on 296 degrees of freedom
## AIC: 330.77

##

## Number of Fisher Scoring iterations: 4

natural effects <- function(data, m.mod, y.mod) {
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}

d <- data

choll <- predict(m.mod, newdata = transform(d, fbs = 1), type
chol0 <- predict (m.mod, newdata = transform(d, fbs = 0), type
# Natural Direct Effect (NDE)
# E[Y (fbs=1, M=M(0))] - E[Y(fbs=0, M=M(0))]
y1l0 <- predict (y.mod,
newdata = transform(d, fbs = 1, chol = chol0),
type = "response")
y00 <- predict (y.mod,
newdata = transform(d, fbs = 0, chol = chol0),
type = "response")
NDE <- mean(yl0 - y00)
#Natural Indirect Effect (NIE
# E[Y(fbs=1, M=M(1l))] - E[Y(fbs=1, M=M(0))]
yll <- predict (y.mod,
newdata = transform(d, fbs = 1, chol = choll),
type = "response")

y10b <- yl10
NIE <- mean(yll - y10Db)

#Total Effect

TE <- mean(yll - y00)

list (NDE = NDE, NIE = NIE, TE

# already computed

TE)

effects <- natural effects(dat, m.mod, y.mod)

effects

#H
##
##
#H
#H
##
##

SNDE
[1] -0.0745981
SNIE
[1] -0.003068275

STE
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## [1] -0.07766638
library (boot)
boot fun <- function(d, idx) {
dd <- d[idx, ]
m.mod.b <- glm(chol ~ fbs + age + sex + ca, data = dd)
y.mod.b <- glm(target ~ fbs * chol + age + sex + ca,
data = dd, family = binomial)
ef <- natural effects(dd, m.mod.b, y.mod.b)
c (NDE = efSNDE, NIE = efS$NIE, TE = efS$TE)
}
set.seed (123)

boot.out <- boot (data

dat, statistic = boot fun, R = 1000)

boot.ci (boot.out, type = "perc", index = 1) # NDE
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 1000 bootstrap replicates

## CALL

## boot.ci (boot.out = boot.out, type = "perc", index = 1)
##

## Intervals

## Level Percentile

## 95% (-0.2121, 0.0745 )

## Calculations and Intervals on Original Scale
boot.ci (boot.out, type = "perc", index = 2) # NIE
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 1000 bootstrap replicates

##

## CALL

## boot.ci (boot.out = boot.out, type = "perc", index = 2)
##

## Intervals

## Level Percentile

## 95% (-0.0517, 0.0310 )

## Calculations and Intervals on Original Scale
boot.ci (boot.out, type = "perc", index = 3) # TE
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 1000 bootstrap replicates

##
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##
#HH
#HH
##
##
#HH
#HH

CALL

boot.ci (boot.out = boot.out,

Intervals
Level Percentile
95% (-0.2198, 0.0666

Calculations and Intervals on Original Scale

)

type = "perc",
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