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Summary 

Coronary heart disease (CHD) remains the leading cause of morbidity and mortality worldwide (Lu 

& Lan, 2022). While many observational studies have documented associations between risk 

factors such as smoking, hypertension, dyslipidemia, diabetes, and obesity with coronary heart 

disease (CHD), association is not causation. In this project, we applied causal inference approaches 

using the Cleveland UCI heart-disease dataset to estimate the causal effect of modifiable risk 

factors on CHD. We have employed causal DAGs, logistic regression, bootstrapping, propensity 

score methods, inverse probability weighting, doubly robust estimators, targeted maximum 

likelihood estimation (TMLE) and mediation analyses. The objective outcome variable was the 

presence of heart disease, which was treated as a binary dummy variable. Fasting blood sugar was 

identified as the exposure, while age and sex were identified as confounders, and cholesterol was 

identified as a mediator based on a review of recent studies. Exploratory data analyses (correlation 

matrix and correlation heatmap) were done for a quick check of the nature of the relationship 

between variables, which found some strong correlation between the outcome, confounders, and 

some variables that were regarded as symptoms of the presence of the outcome variable. The 

correlation between exposure and outcome variable was non-significant, which might be attributed 

to the effect of confounders or mediator variables that need to be adjusted for. So, we explored the 

causal inference method that helps to adjust for the effect these variables so that we can extract the 

causal effect of treatment/exposure on the outcome variable of interest. Key outputs include causal 

effect estimates, directed acyclic graphs, and sensitivity analyses to evaluate robustness. The results 

of logistic regression of outcome on potential exposure variable fasting blood sugar has an 

estimated log-odds ratio of 0.88 with p-value 0.723. Bayesian bootstrapping with weak priors was 

done to estimate the ATE, the posterior mean of ATE was -0.0406, with 95% CI of (-0.1657, 

0.0786). Propensity score methods yield causal ORs of 1.07122 with p-value 0.674 and 0.91960 

with p-value 0.806 for the exposure model and outcome model respectively. TMLE was performed 

using the SuperLearner and tmle packages where the estimated relative risk of treatment vs control 

was 1.023, and the causal OR was 1.044, with p-value of 0.906. The results of parametric estimation 

for the mediation analysis estimates that the NDE is -0.0746, with 95% CI (-0.212, 0.075), NIE is 

-0.0031with 95% CI (-0.517, 0.031), TE is -0.0777 with 95% CI (-0.220, 0.067). Overall, no 

significant causal effect was found on the relationship between fasting blood sugar and presence of 

coronary heart disease in the Cleveland UCI heart disease dataset. 

  



   

 

iii 
 

Acknowledgments 

We would like to express our deepest gratitude to Dr. Robert Paige for giving us the invaluable 

opportunity to work on this project and for his continuous support and guidance from the 

development of the proposal to the completion of the project. His insightful suggestions on 

appropriate methodologies, constructive feedback on our comments and questions during lectures, 

and his willingness to respond to our inquiries outside class hours have been instrumental to our 

learning and the success of this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

iv 
 

Table of contents 

Summary ii 

ACKNOWLEDGMENTS III 

TABLE OF CONTENTS IV 

1. INTRODUCTION 2 

1.1. Background of the Study 2 

1.2. Objectives of the Study 2 

2. METHODS 3 

2.1. Meta Data and Causal DAG 3 

2.2. Do-Calculus Using Bayesian-Network 4 

2.3. Logistic Regression 5 
2.3.1. Conceptual Framework and Assumptions 5 
2.3.2. Statistical Modeling 5 
2.3.3. Assessment of Model Assumptions and Diagnostics 6 

2.4. Bootstrap-A Bayesian Approach 7 
2.4.1. The Model 7 
2.4.2. The Bootstrap Framework 8 
2.4.3. Computation of the Average Treatment Effect 8 

2.5. Propensity score methods 9 
2.5.1. Theory 9 
2.5.2. Computation 9 

2.6. ATE, G-computation, AIPTW, and TMLE 10 
2.6.1. Computational Procedures 10 

2.7. Mediation Analysis 12 
2.7.1. Motivations and Reasoning 12 
2.7.2. Model Specifications 12 

3. RESULTS 13 

3.1. Causal DAG and data exploration 13 

3.2. Results of Do-Calculus with Netica 15 

3.3. Results of Logistic regression 15 

3.4. Bootstrap estimation procedure 17 



   

 

v 
 

3.5. Propensity Score Methods Results 18 

3.6. Targeted Maximum Likelihood Estimation, G-computation and AIPTW 19 

3.7. Mediation Analysis Results 20 
3.7.1. Parametric Linear Model 20 

4. CONCLUSION 21 

References 23 

APPENDIX: R CODE USED IN THE STUDY 24 

CAUSAL EFFECT OF FASTING BLOOD SUGAR ON HEART ATTACK 24 

Introduction 24 

Data Import 24 

Variable Definitions and Data Preparation 24 

Descriptive Statistics 25 

Model 1: Total Effect of FBS (Adjusted for Age and Sex) 27 

Model 2: Direct Effect of FBS (Adjusted for Age, Sex, Cholesterol, and Resting BP) 28 

Comparison of FBS Effect Across Models 30 

Model Diagnostics 31 

Interpretation 32 

MEDIATION USING PACKAGE 33 
 

 

 

 

 

  



   

 

2 
 

1. Introduction 

1.1. Background of the Study 

Cardiovascular diseases, particularly ischemic heart disease, remain a major cause of global 

morbidity and mortality.  According to the Global Burden of Disease report, ischemic heart disease 

has been the leading cause of death and disability globally for decades (Mensah et al., 2023) . 

Studies indicated that modifiable risk factors, including smoking, hypertension, dyslipidemia, 

diabetes, obesity, poor diet, and psychosocial stress, account for over 90% of the population-

attributable risk for myocardial infarction (Yusuf et al., 2004). Other cohort studies, such as 

(Seeman et al., 1993) and (Tervahauta et al., 1995), have further shown that biological and 

psychosocial factors significantly contribute to cardiovascular risk. All these studies establish 

associations, not causation.  

Association studies can be affected by confounding, selection bias, and measurement error. Modern 

causal inference methods, as formalized in Pearl’s structural causal model (SCM) framework 

(Austin, 2011) and epidemiological approaches discussed by Hernán and Robins (Hernán & 

Robins, 2018), enable researchers to formally express causal assumptions, identify valid adjustment 

sets, and estimate causal effects under explicit assumptions. This study will therefore use the 

Cleveland UCI heart-disease dataset to estimate the causal relationships between key risk factors 

and CHD using robust causal inference methods. 

1.2. Objectives of the Study 

The primary objective of this study is to estimate the causal effects of selected modifiable risk 

factors on CHD. 

Specific Objectives 

1. Explore different parametric and non-parametric methods of estimating the causal effect 

of the exposure on the outcome adjusted for appropriate confounders.  

2. Evaluate uncertainty using bootstrapping and influence-function-based inference. 

3. Obtain bias adjusted treatment effect estimates using propensity score, mediation, G-

Computation, AIPTW, and TMLE. 
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2. Methods 

We have used different graphical and numerical methods in order to achieve the intended 

objectives. 

2.1. Meta Data and Causal DAG 

We have used Cleveland UCI heart diseases data that has 303 cases with 14 variables collected. 

The list of variables and their descriptions was given in table 1. 

List of all variables in the data with their descriptions were given in table 1.  

Table 1: Meta data 

Variable Description 

Age Age in years. 

Sex 1 = male, 0 = female. 

Cp Chest pain type (1 = typical angina, 2 = atypical angina, 3 = non‑anginal, 4 = asymptomatic). 

Trestbps Resting blood pressure in mm Hg. 

Chol Serum cholesterol in mg/dl. 

Fbs Fasting blood sugar >120 mg/dl (1 = true, 0 = false). 

Restecg Resting electrocardiographic results (0 = normal, 1 = ST–T abnormality, 2 = LV 

hypertrophy). 

Thalach Maximum heart rate achieved (bpm). 

Exang Exercise‑induced angina (1 = yes, 0 = no). 

Oldpeak ST depression induced by exercise relative to rest. 

Slope Slope of peak exercise ST segment (1 = upsloping, 2 = flat, 3 = downsloping). 

Ca Number of major vessels (0–3) colored by fluoroscopy. 

Thal Thallium stress test result (3 = normal, 6 = fixed defect, 7 = reversible defect). 

Target Heart disease presence (0 = no disease, 1 = disease). 

 

The outcome variable of interest in this study is the target(which indicated the presence or absence 

of Coronary Artery Disease, CAD). The variables considered listed above include confounders, 

potential risk factors, and manifestations/symptoms of the presence of CAD. The following is a 

detailed discussion of the nature of the relationships present. 

The variables age, sex, resting blood pressure, cholesterol level, and fasting blood sugar are widely 

recognized predictors of coronary artery disease (CAD). Advancing age and male sex significantly 

elevate CAD risk, as shown in large epidemiologic studies (Rodgers et al., 2019; Kim et al., 2023). 

Here age and sex can be regarded as measured confounders since we cannot control them, and the 

variables have no parents in the DAG. Hypertension (high blood pressure) is a major modifiable 

determinant of CAD(Unger et al., 2020).  
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Clinically, CAD manifests through chest pain (angina), reduced exercise tolerance, abnormal 

maximum heart rate response, and exercise-induced angina (Gulati et al., 2021). So, Chest can be  

classified as a symptom of heart disease.  Stress testing frequently reveals ischemia through ST-

segment depression or abnormal ST-segment slope, which correlate strongly with obstructive 

coronary disease (Vilcant & Zeltser, 2023). The severity of CAD is reflected in the number of major 

coronary vessels involved, typically assessed through coronary angiography. Resting 

electrocardiographic abnormalities may indicate prior myocardial injury or active ischemia, 

contributing to diagnostic evaluation and risk stratification (Shahjehan & El-Sherief, 2024). The 

DAG is then constructed based on the above nature of relationships between the variables.  

2.2. Do-Calculus Using Bayesian-Network 

Bayesian Network (BN) was constructed in Netica to encode the assumed causal 

relationships among relevant clinical variables based on the causal DAG established. The 

following steps were followed to conduct the do-calculus. The node for each of the relevant 

variables were created, states were created for categorical variables and continuous 

variables were discretized.  

The modelling steps:   

1. The confounder variables age and sex were designed to have directed edges as age 

→ fbs, sex → fbs, age → target, and sex → target. This structure ensures that Netica 

appropriately adjusts for these backdoor paths when estimating the causal effect of 

fbs.  

2. Chol (serum cholesterol) was modeled as a mediator of the fbs–target relationship. 

Clinical evidence suggests that abnormal glucose regulation contributes to 

dyslipidemia, which subsequently impacts cardiovascular risk. This mechanism 

was represented by the directed pathway fbs → chol → target, while also retaining 

a direct arrow fbs → target so that both direct and indirect causal effects could be 

quantified.  

3. Trestbps (resting blood pressure) was incorporated as effect modifier. Rather than 

confounding the fbs–target relationship, these variables alter its magnitude. In a BN 

framework, effect modification is implemented by allowing the conditional 

distribution of the outcome to depend jointly on the exposure and the modifier. 
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Therefore, trestbps was set as additional parent nodes of target, enabling Netica to 

estimate heterogeneous causal effects across levels of these variables.  

After the structure was defined, the cleaned dataset was imported as a case file and Netica’s 

Learn CPTs procedure was used to estimate model parameters. Continuous variables were 

discretized into clinically meaningful intervals to enhance interpretability and 

computational stability. The network was then compiled to enable inference.  

Causal effects were estimated using Netica’s intervention (do-operator) functionality. 

An intervention on fbs, denoted do(fbs = x), forces the network to simulate an active 

manipulation of fbs while severing all incoming edges to fbs, thereby eliminating 

confounding by age and sex. The resulting distribution P(target | do(fbs = x)) represents 

the estimated causal effect of modifying fbs. Effect modification was assessed by 

comparing interventional results across strata of trestbps and ca, and mediation was 

examined by evaluating how the distribution of chol responds under intervention. This BN-

based methodology provides a coherent and transparent framework for causal inference 

that explicitly incorporates confounding control, mediation pathways, and effect 

heterogeneity.  

2.3. Logistic Regression  

2.3.1. Conceptual Framework and Assumptions 

The aim is to find the causal effect of blood sugar (FBS) on heart attack occurrence using logistic 

regression, while adjusting for confounders and accounting for potential mediators.  The exposure 

of interest is fbs with binary outcome target, Confounders: age, sex. Mediators: chol (serum 

cholesterol), trestbps (resting blood pressure). For valid causal interpretation, the following 

assumptions are invoked: (i) no unmeasured confounding of the FBS–heart attack relationship after 

conditioning on age and sex; (ii) no unmeasured confounding of the FBS–mediator and mediator–

outcome relationships; (iii) correct model specification; and (iv) no substantial measurement error 

in the variables. 

2.3.2. Statistical Modeling 

The modeling strategy is structured to: Estimate the confounder-adjusted total effect of fasting 

blood sugar on heart attack and explore how adjustment for potential mediators (cholesterol and 

resting blood pressure) reduces the FBS–heart attack association. 
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A. Confounder-Adjusted Total Effect Model (Model 1) 

To estimate the total effect of exposure on Y, we fit a logistic regression model specified as: 

          (1) 

Where 𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝

1−𝑝
) . In this model, 𝛽1   represents the log-odds ratio for heart attack 

comparing individuals with (fbs = 1) to those without (fbs = 0), adjusted for age and sex. The 

corresponding odds ratio for the total effect is exp⁡(𝛽1).  

 B. Mediation Model Including Cholesterol and Blood Pressure (Model 2) 

To assess the role of cholesterol and resting blood pressure as mediators, we extend the logistic 

regression model to include chol and trestbps as additional covariates: 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑦 = 1|(𝐴, 𝐶,𝑀))] = 𝛾0 + 𝛾1𝑓𝑏𝑠 + 𝛾2𝑎𝑔𝑒 + 𝛾3𝑠𝑒𝑥 + 𝛾4𝑐ℎ𝑜𝑙 +⁡𝛾5𝑡𝑒𝑠𝑡𝑏𝑝𝑠⁡⁡⁡⁡⁡⁡⁡(2) 

Where 𝑤ℎ𝑒𝑟𝑒⁡(𝐴, 𝐶,𝑀) = (𝑓𝑏𝑠, 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑐ℎ𝑜𝑙, 𝑡𝑟𝑒𝑠𝑡𝑏𝑝𝑠)  

In this expanded model, 𝛾1 estimates the log-odds ratio for the direct effect of FBS on heart attack, 

conditional on age, sex, cholesterol, and resting blood pressure. Under the causal assumptions, 

exp⁡(𝛾1) can be interpreted as an approximation of the controlled direct effect of FBS on heart 

attack, controlling for the mediators. 

Comparing the FBS coefficient between Model 1 (𝛽1) and Model 2 (𝛾1) allows us to evaluate the 

degree of weakening in the association after accounting for the mediators. A substantial reduction 

in the magnitude of the FBS odds ratio when mediators are included would be consistent with some 

of the total effect being transmitted through cholesterol and/or blood pressure. 

 C. Model Fitting and Estimation 

Models will be estimated using maximum likelihood estimation. The primary parameter of interest 

is the odds ratio for FBS: 

• In Model 1: 𝑂𝑅𝑡𝑜𝑡𝑎𝑙 = exp⁡(𝛽1) , interpreted as the odds ratio for heart attack for individuals 

with elevated FBS vs. normal FBS, adjusted only for confounders. 

•   In Model 2: 𝑂𝑅𝑑𝑖𝑟𝑒𝑐𝑡 ≈ exp⁡(𝛾1), interpreted as the odds ratio for heart attack associated with 

elevated FBS after controlling for both confounders and mediators. 

 2.3.3. Assessment of Model Assumptions and Diagnostics 
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Several diagnostics will be performed to assess model adequacy and assumptions: 

• Multicollinearity: Variance inflation factors (VIFs) or correlation matrices will be examined 

to identify potential multicollinearity between predictors, especially between chol and trestbps 

or between age and the mediators. 

•   Goodness-of-fit: Overall model fit will be evaluated using measures such as the Hosmer–

Lemeshow test and pseudo R-squared statistics. ROC curve was used to evaluate the 

predictive performance of the model. 

2.4. Bootstrap-A Bayesian Approach 

The primary causal question is: what is the effect of (fbs) on the probability of having a heart attack, 

adjusting for confounders, and considering potential mediators, after assuming weak priors on the 

parameters? The variable definitions are as before, and the nature of relationship declared in logistic 

regression were also adopted here. The core idea is to build a Bayesian logistic regression in Stan, 

apply nonparametric bootstrapping at the data level, and for each bootstrap sample fit the same 

Stan model. Causal effects (e.g., average treatment effect of fbs on the probability of heart attack) 

are then computed from the posterior draws for each bootstrap replicate. Finally, ShinyStan is used 

to explore and diagnose each Stan fit.  

Assumptions for valid inference. Consistency, Positivity, Conditional exchangeability are 

assumed.  

2.4.1. The Model  

The core statistical model for the outcome is a Bayesian logistic regression linking the log-odds of 

heart attack to fbs, age, sex, chol, and trestbps. For subject i = 1, …, N, the model can be written 

as: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1)) = 𝛼 + 𝛽𝑓𝑏𝑠 ∗ 𝑓𝑏𝑠𝑖 + 𝛽𝑎𝑔𝑒𝑎𝑔𝑒𝑖 + 𝛽𝑠𝑒𝑥 ∗ 𝑠𝑒𝑥𝑖 + 𝛽𝑐ℎ𝑜𝑙 ∗ 𝑐ℎ𝑜𝑙𝑖 + 𝛽𝑡𝑟𝑒𝑠𝑡𝑏𝑝𝑠 ∗ 𝑡𝑟𝑒𝑠𝑡𝑏𝑝𝑠𝑖 ⁡   

with 𝑌𝑖 modeled as a Bernoulli random variable with probability given by the inverse-logit of the 

linear predictor. Weakly informative (Normal) priors are placed on the intercept and regression 

coefficients. The structure in stan contains: Data: number of observations N; binary outcome y; 

binary exposure fbs; continuous age, chol, trestbps; binary sex.  Parameters:  

𝛼, 𝛽𝑓𝑏𝑠 ,𝛽𝑎𝑔𝑒, 𝛽𝑠𝑒𝑥 , 𝛽𝑐ℎ𝑜𝑙 , 𝛽𝑡𝑟𝑒𝑠𝑡𝑏𝑝𝑠 .  Model block: specification of the logistic regression and 

priors. This model provides posterior draws for all regression coefficients, from which we can 

compute causal contrasts on different scales (risk difference, risk ratio, or odds ratio). 



   

 

8 
 

2.4.2. The Bootstrap Framework 

The bootstrap layer is applied outside Stan at the data level. The steps are: 

1.  Start with the original dataset containing Y, exposure, confounders and mediators. 

2.   For each bootstrap replicate b = 1, …, B: 

•  Draw a bootstrap sample by sampling N rows from the original dataset with 

replacement.  

•   Construct the list of data inputs required by the Stan model (y, fbs, age, sex, chol, 

trestbps, and N). 

•   Fit the Stan model to this bootstrap dataset using rstan, obtaining posterior draws for 

all parameters. 

•    From the posterior draws, compute a summary measure of the causal effect of 

interest (for example, the average treatment effect of fbs on the probability of heart 

attack). 

3.  Aggregate the estimates across bootstrap replicates: store one causal effect estimate per 

bootstrap sample (or store full posterior summaries for each replicate), and then compute 

bootstrap means, standard deviations, and confidence or credible intervals. 

 2.4.3. Computation of the Average Treatment Effect  

A natural estimand in this setting is the average treatment effect (ATE) on the risk scale, defined 

as the average difference in the probability of heart attack if all individuals were set to fbs = 1 

versus if all individuals were set to fbs = 0, averaging over the empirical distribution of covariates 

in the dataset. Using posterior draws from Stan: 

 For each posterior draw of 𝛼, 𝛽𝑓𝑏𝑠 ,𝛽𝑎𝑔𝑒, 𝛽𝑠𝑒𝑥 , 𝛽𝑐ℎ𝑜𝑙 , 𝛽𝑡𝑟𝑒𝑠𝑡𝑏𝑝𝑠), compute two sets of predicted 

probabilities for each individual.  

• 𝑃(1)𝑖: predicted probability of 𝑌𝑖 = 1  if fbs_i were set to 1, holding age, sex, chol, and 

trestbps at their observed values. 

• 𝑃(0)𝑖 : predicted probability of 𝑌𝑖 = 1  if fbs_i were set to 0, again holding other variables 

at their observed values. 

1. For each draw, compute the individual-level differences 𝑃(1)𝑖 − 𝑃(0)𝑖: and average them 

over all individuals to obtain a draw-specific ATE on the probability scale. 

2.   Repeat over all posterior draws and summarize the distribution (posterior mean, median, and 

credible interval). 
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Within each bootstrap sample, this yields a posterior distribution for the ATE. The mean or median 

of this posterior can be taken as the ATE estimate for that particular bootstrap replicate. Across B 

bootstrap samples, the B ATE estimates provide a bootstrap distribution that reflects both sampling 

variability (through resampling) and model-based uncertainty (through the posterior). 

2.5. Propensity score methods  

2.5.1. Theory 

Most causal data science methods adjust a treatment effect with the set of sufficient confounders, 

however in the case of many confounders, it may be helpful to simplify these into one single 

confounder. In fact, if a set of sufficient confounders exists, then the univariate propensity score 

must also be a sufficient confounder. While this property holds exactly for a known function of the 

confounders, it will approximately hold for estimated parameters of the confounders, most 

commonly done with logistic regression. These propensity scores estimate an individual’s 

probability of receiving the treatment based on the set of sufficient confounders. The propensity 

scores can then used as an ordinary confounder, to match treated and untreated individuals, or to 

standardize in the exposure model. 

2.5.2. Computation 

As with all other methods, we assume the following variable notations: Treatment: A = fbs; 

Outcome: Y = target; Confounders: W = (age, sex). 

Using a logistic regression of 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐴 = 1)) = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑠𝑒𝑥 to obtain fitted values 

for the propensity scores, 𝑒(𝑊). To check the positivity assumption, look at the densities of the 

propensity scores for the treated and untreated groups. A high density near 0 or 1 that is 

unaccompanied by the other group could be a positivity violation.  

A. Standardization with exposure modeling 

Using the propensity score, e(W), the observations can be weighted. This makes the adjustment 

that including the confounders would have had, weighting observations to equate the distributions 

of confounders among the treated and untreated groups, using only the propensity score. 

B. Propensity scores in the outcome model 

In the outcome model, the propensity scores themselves are used in a model in direct substitution 

of the set of sufficient confounders, along with the treatment. Because of our data’s binary target 
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variable, the outcome model used was a logistic regression of 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1)) = 𝛽0 + 𝛽1𝑓𝑏𝑠 +

𝛽2𝑒(𝑊).  

C. Matching on propensity score 

One final application of the propensity score method is matching. In traditional matching, a 

researcher might attempt to match each treated individual to one or more untreated individuals with 

the same confounders. If the number of confounders is large, this may not be possible, and we 

match on propensity score instead of the entire set of confounders. Matching provides an intuitable 

strategy to compare treated and untreated groups and can be used with propensity score. 

2.6. ATE, G-computation, AIPTW, and TMLE  

2.6.1. Computational Procedures 

Variable notations: Treatment: A = fbs (1 = high fasting blood sugar, 0 = normal); Outcome: Y 

= target (1 = heart disease present, 0 = none); Confounders: W = (age, sex). 

1. Average Treatment Effect (ATE) 

Define potential outcomes: Y1: outcome if everyone had fbs = 1, Y0: outcome if everyone had 

fbs = 0.  Then the ATE is: ATE = 𝐸[𝑌1 − 𝑌0] 

Under identification assumptions (consistency, exchangeability given 𝑊, positivity), this equals: 

ATE = 𝐸𝑊[𝐸[𝑌 ∣ 𝐴 = 1,𝑊] − 𝐸[𝑌 ∣ 𝐴 = 0,𝑊]]. In our dataset: 𝐸[𝑌 ∣ 𝐴 = 𝑎,𝑊] is the 

predicted probability of heart disease (target=1) for a given age, sex if fbs = a. 

2. G‑computation (G‑formula) 

The G‑formula version of the ATE is: 

∑∑𝑃(𝑌 = 𝑦|𝐴 = 1,𝑊 = 𝑤)𝑃(𝑊 = 𝑤)

𝑦

−∑∑𝑃(𝑌 = 𝑦|𝐴 = 0,𝑊 = 𝑤)𝑃(𝑊 = 𝑤)

𝑦𝑤𝑤

 

In our setting, conceptually we are going to: 

• Fit an outcome model 𝑄(𝑎,𝑤) = 𝐸[𝑌 ∣ 𝐴 = 𝑎,𝑊 = 𝑤] using target as outcome and 

predictors fbs, age, sex. 

• Average predicted differences across the empirical distribution of age, sex in the sample. 
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Empirical (sample) G‑computation estimator: ATÊG-comp =
1

𝑛
∑ {𝑄̂(1,𝑊𝑖) − 𝑄̂(0,𝑊𝑖)}
𝑛
𝑖=1 . 

Where: 

• 𝑄̂(1,𝑊𝑖) is the predicted probability of target=1 if individual 𝑖 had fbs=1 given their 

age_i, sex_i. and 𝑄̂(0,𝑊𝑖) is the analogous prediction for fbs=0. 

3. AIPTW (Augmented Inverse Probability of Treatment Weighting) 

Define: Outcome regression: 𝑄(𝑎,𝑤) = 𝐸[𝑌 ∣ 𝐴 = 𝑎,𝑊 = 𝑤] and Propensity score: 𝑔(𝑎 ∣ 𝑤) =

𝑃(𝐴 = 𝑎 ∣ 𝑊 = 𝑤) and in our dataset: 𝑔(1 ∣ 𝑊) = 𝑃(𝑓𝑏𝑠 = 1 ∣ 𝑎𝑔𝑒, 𝑠𝑒𝑥) and 𝑔(0 ∣ 𝑊) = 1 −

𝑔(1 ∣ 𝑊).  The AIPTW estimator of the ATE is: 

  ATÊAIPTW =
1

𝑛
∑ [(𝐼{𝐴𝑖 = 1} 𝑔̂(1 ∣ 𝑊𝑖)⁄ (𝑌𝑖 − 𝑄̂(1,𝑊𝑖)) + 𝑄̂(1,𝑊𝑖)) − (𝐼{𝐴𝑖 = 0} 𝑔̂(0 ∣ 𝑊𝑖)⁄ (𝑌𝑖 −
𝑛
𝑖=1

𝑄̂(0,𝑊𝑖)) + 𝑄̂(0,𝑊𝑖))]  

Intuition in our context: 

• The terms 𝐼{𝐴𝑖 = 𝑎} 𝑔(𝑎 ∣ 𝑊𝑖)⁄ (𝑌𝑖 − 𝑄̂(𝑎,𝑊𝑖)) are “residuals” reweighted by inverse 

probability of treatment. 

• The 𝑄̂(𝑎,𝑊𝑖) parts are the G‑computation predictions. 

• Combining them yields a doubly robust estimator: consistent if either the propensity 

model or the outcome model is correctly specified. 

4. TMLE (Targeted Maximum Likelihood Estimation) for the ATE 

TMLE uses the same equations: 

• 𝑄(𝑎,𝑤): outcome regression and 𝑔(𝑎 ∣ 𝑤): propensity score 

The targeted estimates are obtained as: ATÊTMLE =
1

𝑛
∑ {𝑄̂∗(1,𝑊𝑖) − 𝑄̂∗(0,𝑊𝑖)}
𝑛
𝑖=1  

And: 𝑀𝑂𝑅̂𝑇𝑀𝐿𝐸 =
[
1

𝑛
∑ 𝑄̂∗(1,𝑊𝑖)
𝑛
𝑖=1 ][1−

1

𝑛
∑ 𝑄̂∗(0,𝑊𝑖)
𝑛
𝑖=1 ]

[1−
1

𝑛
∑ 𝑄̂∗(1,𝑊𝑖)
𝑛
𝑖=1 ][

1

𝑛
∑ 𝑄̂∗(0,𝑊𝑖)
𝑛
𝑖=1 ]

 

• Like in AIPTW, these estimators are also doubly robust. 
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2.7. Mediation Analysis  

2.7.1. Motivations and Reasoning 

Examining the DAG, it can be seen that there is one mediator variable, cholesterol, between the 

treatment(fbs) and outcome(target). Thus, mediation analysis must be conducted to determine the 

effect, if any, of the cholesterol level on the target variable. Three major confounders are considered 

in the analysis due to their interactions with fbs, cholesterol, and target. Age, a confounder on fbs 

and target, sex, a confounder on fbs and cholesterol, and ca, a confounder on cholesterol and the 

target variable. Since the study was not randomized, all three confounders must be considered.  

The mediation analysis conducted is the natural linear parametric model. A natural parametric 

model was used as the mediator is not a variable that is manually set and there may be possible 

treatment-mediator interactions. This model assumes that all confounding between the three 

variables has been identified and adjusted.  

2.7.2. Model Specifications  

Model terms: 𝑌⁡ = ⁡𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑡𝑎𝑟𝑔𝑒𝑡), 𝐴⁡ = ⁡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(𝑓𝑏𝑠),𝑀⁡ = ⁡𝑚𝑒𝑑𝑖𝑎𝑡𝑜𝑟(𝑐ℎ𝑜𝑙), 𝐻⁡ =

⁡𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠(𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑐𝑎),𝑀(𝑎) = potential outcome of the mediator 𝑀 to assigning treatment 

𝐴⁡ = ⁡𝑎, 𝑌(𝑎,𝑚) ⁡= ⁡𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙⁡𝑜𝑢𝑡𝑐𝑜𝑚𝑒⁡𝑓𝑜𝑟⁡𝑡ℎ𝑒⁡𝑜𝑢𝑡𝑐𝑜𝑚𝑒⁡𝑌⁡𝑡𝑜⁡𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔⁡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡⁡𝐴⁡ =

⁡𝑎⁡𝑎𝑛𝑑⁡𝑚𝑒𝑑𝑖𝑎𝑡𝑜𝑟⁡𝑀⁡ = ⁡𝑚. 

Assumptions: (i) 𝑌(𝑎,𝑚) ⁡⊥⊥ ⁡𝐴|𝐻, (ii). 𝑌(𝑎,𝑚) ⁡⊥⊥ ⁡𝑀|𝐻, A,  (iii)⁡𝑀(𝑎) ⁡⊥⊥ ⁡𝐴|𝐻, (iv) 

𝑌(𝑎,𝑚) ⁡⊥⊥ ⁡𝑀(𝑎)|𝐻.⁡ 

Models 

Natural direct effect(NDE):⁡𝑁𝐷𝐸(𝑎, 𝑎 ∗; ⁡𝑎 ∗) ⁡= ⁡ (⁡𝛽1 + ⁡𝛽3(𝛼0 + ⁡𝛼1𝑎 + ⁡𝛼2𝑇𝐸(𝐻)))(𝑎 − 𝑎 ∗) 

Natural indirect effect(NIE): 𝑁𝐼𝐸(𝑎, 𝑎 ∗; 𝑎) = (𝛽2𝛼1 + 𝛽3𝛼1)(𝑎 − 𝑎 ∗) 

Total effect(TE): 𝑇𝐸⁡ = ⁡𝑁𝐷𝐸⁡ + ⁡𝑁𝐼𝐸 

Nonparametric bootstrapping of the results of NIE, NDE, and TE will be conducted to verify the 

validity of findings. 
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3. Results  

3.1. Causal DAG and data exploration 

The causal DAG was produced based on the review of literatures from previous studies using 

DAGitty, online version, and the result was given in figure 1 

 

Figure 1: The DAG 

Based on the DAG and review of the literature, we identified fbs as the exposure, age and sex to be 

confounders, cholesterol as a mediator, trestbps as an effect modifier, and target to be the outcome. 

The correlation matrix and correlation matrix heatmap plot were used to understand the nature of 

relationship between variables, and check the validity of the initial DAGs, before proceeding to 

further analysis. From the result we can see that the outcome variable has non-negligible 

relationship with all variables included in the study, but the direction of relationship cannot be 

determined from the correlation analysis. 
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variables Corr 

Age 0.2231 

Sex 0.2768 

Cp 0.4144 

Trestbps 0.1508 

Chol 0.0852 

Fbs 0.0253 

Restecg 0.1692 

Thalach -0.4172 

Exang 0.4319 

Oldpeak 0.4245 

Slope 0.3392 

Ca 0.4600 

Thal 0.5159 

Target 1.0000 

Figure 22: Exploratory Data analysis  

Numerical summary of target and exposure variable combination  

Measure Category Count Proportion 

Exposure (fbs = a) 0 258 0.8515 

Exposure (fbs = a) 1 45 0.1485 

Outcome (y) 0 164 0.5413 

Outcome (y) 1 139 0.4587 

Crude Association fbs = 0, y = 0 141 0.5465 

Crude Association fbs = 0, y = 1 117 0.4535 

Crude Association fbs = 1, y = 0 23 0.5111 

Crude Association fbs = 1, y = 1 22 0.4889 

 

From the above results we see that the exposure-outcome variable combination is moderately 

balanced, so there is no extreme or unexpected outcome because of the imbalance exposure-

outcome combination. 
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3.2. Results of Do-Calculus with Netica 

     

     

𝑃(𝑌 = 1|𝑓𝑏𝑠 = 1) = 0.495 and  

𝑃(𝑌 = 1|𝑓𝑏𝑠 = 0) = 0.465 = ⁡𝐴𝑇𝐸 = 0.495 − 0.465 = 0.03 

So, from the results we see that the RD or ATE was 0.03 whereas the RR =1.0667 and 

OR=1.1277. Other details were omitted just to minimize the volume of our reports.   

 

3.3. Results of Logistic regression 

The results of fitting logistic regression to the data are given in table 2 below. The results indicate 

that the null deviance is very high as compared to the residual deviance, indicating that the 

treatment and confounders had done better in controlling the variability in Y, indicating the overall 

logistic regression model is better than the null model. The dispersion parameter was also found to 

be 1, indicating that there is no problem of overdispersion. The estimate of the coefficient of the 

treatment effect  𝛽̂1 = 0.884⁡, with p-value of 0.723, suggesting that 𝛽1 is nonsignificant, there 

is no significant effect of treatment on the outcome. Further, the analysis has revealed that the effect 

of both cofounders is significant. The result of model 2 indicates that the effects of mediator are 

nonsignificant at 5% level of significance but there was no significant change in the estimate of 𝛽1 

between the two models.  We further checked the presence of multicollinearity using VIF and the 

result indicated that there was no problem of multicollinearity in the data set. The ROC procedure 

also revealed that the area under the curve is 0.7277 (the model is fair).  

         Table 2  Logistic regression output for model 1 

Term Estimate std.error Statistic p.value 95% confidence Interval 

(Intercept) 0.008 0.900 -5.363 0.000 0.001 0.044 
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fbs>120 0.884 0.347 -0.355 0.723 0.445 1.747 

Age 1.069 0.015 4.437 0.000 1.038 1.101 

sexMale 4.506 0.290 5.187 0.000 2.588 8.100 

 

Model diagnostics results 

(Dispersion parameter for binomial family taken to be 1) Null deviance: 417.98 on 302 

df: Residual deviance: 372.18  on 299  df:  AIC: 380.18 

Goodness of fit test 

Sum of squared errors     Expected value|H0        SD          Z           P            
64.8367953             64.5614450             0.2570878  1.0710362  0.2841532                                                                  
 

Pseudo.R.squared.for.model.vs.null 

                              Pseudo.R.squared 

 McFadden                             0.109580 

 Cox and Snell (ML)                   0.140292 

 Nagelkerke (Cragg and Uhler)         0.187484 

Likelihood.ratio.test stat=45.802  pvalue=6.2477e-10 

                                                    

         Table 3  Logistic Regression of outcome on exposure adjusted for confounders and mediator 

Term Estimate Std.error Statistic P-value 95% CI 

(Intercept) 0.001 1.393 -5.377 0.000 0.000 0.008 

Fbs>120 0.808 0.353 -0.605 0.545 0.401 1.613 

Age 1.058 0.016 3.623 0.000 1.027 1.092 

Sexmale 5.412 0.309 5.465 0.000 3.008 10.138 

trestbps 1.015 0.008 1.926 0.054 1.000 1.031 

Chol 1.005 0.003 1.787 0.074 1.000 1.010 

 FBS AGE SEX CHOL TRESTBPS  

VIF 1.04 1.14 1.18 1.11 1.11  

Null deviance: 417.98  on 302  degrees of freedom:  Residual deviance: 364.70  on 

297  degrees of freedom: AIC: 376.7 

The logistic regression model at hand is then checked for its overall significance and then for its 

goodness of fit to the data and the results of all these procedures are given below table 2. From the 

result we can see that the logistic regression is significantly different from the null model, see also 

the Pseudo R square values which are fairly different from zero. We further did chi square goodness 

of fit test, with the result indicating that the test statistic is 1.0710362 with p-value of 0.2841532, 

suggesting that we do not have evidence against the null hypothesis. So, it is reasonable to fit 

logistic regression to model the data.   
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Figure 3:ROC of Logistic Regression Model 

3.4. Bootstrap estimation procedure 

The parameter estimate of the bootstrap procedure from simulation in stan was given in table 6. 

The result indicates that the posterior estimate of 𝛽𝐴 was -0.19 with posterior high-density credible 

interval of (-0.91,0.51) with effective sample size of 3024 and 𝑅ℎ𝑎𝑡 was 1.  

Table 4 Posterior summary from Bayesian bootstrap of logistic regression parameters 

Parameter Mean se_mean Sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

Alpha -7.01 0.03 1.34 -9.70 -7.93 -6.96 -6.08 -4.46 1792 1 

beta_A -0.19 0.01 0.36 -0.91 -0.44 -0.20 0.05 0.50 3024 1 
beta_age 0.05 0.00 0.02 0.02 0.04 0.05 0.06 0.09 2096 1 

beta_sex 1.64 0.01 0.30 1.08 1.44 1.64 1.85 2.22 2649 1 
beta_chol 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 4364 1 

beta_trestbps 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.03 2403 1 
Samples were drawn using NUTS(diag_e) at Sun Nov 23 16:07:42 2025.  For each parameter, n_eff is a 

crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at 

convergence, Rhat=1). Bootstrap ATE: 
the posterior estimate: Mean =-0.0406, SD = 0.0728,95%  

CI = [-0.1657, 0.0786], total computation time 1.578047 hours 

Posterior distribution of beta_1, details can be provided. 

 

The sign of estimate of 𝛽𝐴 negative indicates that treatment (increased fasting blood sugar level) 

has indirect effect on the risk of heart disease. The confidence interval includes 0, indicating that 

the effect is statistically nonsignificant. The 𝑅ℎ𝑎𝑡 value of 1 indicates that simulation chain has 

converged. Finally, we observe from the result that the posterior estimate of the treatment effect 

ATE has mean of -0.0406, SD = 0.0728 with 95% credible interval of  [−0.1657, 0.0786],indicating 

the ATE under Bayesian modelling is also nonsignificant. 
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Figure 4: Posterior density of distribution of 𝜷𝑨 and 𝑨𝑻𝑬 

3.5. Propensity Score Methods Results 

The plots of propensity scores of treated and untreated groups were estimated using logistic 

regression, and given in figure 5. Because the density of the scores is not high near 0 or 1, the 

positivity assumption holds.  

 

Figure 5: Density plot of propensity scores of treated and untreated groups 

Logistic regression was used as described in the methodology, the exposure model is a weighted 

logistic regression with weights derived from propensity scores, and the outcome model is a logistic 

regression with fbs and the propensity scores. The table below shows the results for the weighted 
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exposure model and outcome model. Both models show a causal OR near 1, and neither show a 

significant causal effect of high fasting blood sugar on heart disease.  

Model OR Estimate SE Z Value P Value Significance 

Exposure 1.07122 0.06880 0.1636 0.421 0.674 Not 

Outcome 0.91960 -0.08382 0.3408 -0.246 0.806 Not 

 

Using the “Matching” R package, matching was done on the basis of propensity scores, the 

estimated ATT is 0.040712, with p value 0.69537, again yielding a non-significant result for the 

ATT, meaning among the treated group, there was no significant causal effect of high fasting blood 

sugar on heart disease. 

3.6. Targeted Maximum Likelihood Estimation, G-computation and AIPTW 

This section summarizes the main estimated effects from the TMLE analysis of the treatment on 

the outcome, including marginal means, risk differences, and relative effect measures. The 

SuperLearner and tmle R packages were used to obtain these estimates. 

Table 8: TMLE Estimate Effects 

Quantity Estimate 95% CI (Lower, 

Upper) 

p-value 

Marginal mean under treatment (EY1) 0.4732 0.3067, 0.6397 < 0.001 

Marginal mean under control (EY0) 0.4626 0.4022, 0.5230 < 0.001 

Additive effect (EY1 - EY0) 0.0106 -0.1663, 0.1875 0.906 

Effect among the treated -0.0281 -0.1925, 0.1363 0.738 

Effect among the controls 0.0165 -0.1641, 0.1970 0.858 

Relative risk (treatment vs. control) 1.0229 0.7031, 1.4881 0.906 

Odds ratio (treatment vs. control) 1.0435 0.5131, 2.1223 0.906 

 

The estimated average probability of the outcome if everyone received the treatment (EY1) is 

approximately 47%, whereas under control (EY0) it is about 46%. The additive treatment effect, 

defined as the difference in these marginal means, is very small (0.01) and not statistically 

significant (p = 0.906). This indicates no evidence that the treatment changes the overall probability 

of the outcome. Subgroup-specific effects among the treated and among the controls are likewise 

small and non-significant, with confidence intervals that also span zero. The relative risk (= 1.02) 

and odds ratio (= 1.04) for treated versus control individuals have wide confidence intervals 

including 1 and non-significant p-values, again suggesting no detectable treatment effect. Overall, 
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across all effect measures (risk difference, relative risk, and odds ratio), the data do not support a 

statistically significant impact of the treatment on the outcome in this sample. 

The table below summarizes the results of the G-computation, AIPTW, and TMLE analyses. 

Table 9: G-computation, AIPTW and TMLE 

 

We can see AIPTW and TMLE produce ATE estimates that are not statistically significant, as 0 is 

contained within both of their confidence intervals. G-computation shows a significant effect of the 

treatment on the outcome, although this effect is weak in magnitude. G-computation is not doubly 

robust and can be biased under model misspecification. Therefore, we will choose to believe that 

there is no ATE based on the results of this analysis.  

3.7. Mediation Analysis Results 

3.7.1. Parametric Linear Model 

The results of the mediation analysis using the parametric linear modelling were given as NDE = -

0.075 with confidence interval of (-0.212, 0.075), NIE = -0.003 with confidence interval of (-0.517, 

0.031), and finally TE = -0.078 with confidence interval of (-0.220, 0.067). Confidence intervals 

are at 95% confidence and obtained through bootstrapping with 1,000 replicates. Within the context 

of the study, this would imply that a higher fasting blood sugar would reduce the likelihood of a 

heart disease diagnosis, which defies the initial assumptions obtained through research. These 

results would mean that the total effect of a higher fasting blood sugar lowers heart disease 

diagnosis by 7.76% altogether, and 7.46% without including the mediating effects of cholesterol. 

Since 0 is contained in all three confidence intervals, the results of the natural direct effect of fasting 

blood sugar on the target, the natural indirect effect of fasting blood sugar on the target (the effect 

obtained through cholesterol), and the total effect of fasting blood sugar on the target are 

inconclusive. It cannot be determined how much of an effect cholesterol has as a mediator on the 

effect of fasting blood sugar on heart disease. These results reflect the results obtained in the TMLE, 

G-computation, and AIPTW analyses in which no average treatment effect of fbs on target was 

found. 

  

Estimator ATE Estimate Std. Error 95% CI (Lower) 95% CI (Upper) 

G-computation -0.0262 0.000315 -0.0268 -0.0255 

AIPTW 0.00439 0.088 -0.168 0.177 

TMLE -0.0213 0.09026 -0.161 0.118 
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4. Conclusion 

In this study, we have tried to establish causal relationship between heart disease and fasting 

blood sugar, adjusting for covariates and mediators in the Cleveland UCI heart disease data. 

Both graphical and numerical causal data analyses methods were used to establish the 

relationship. Dagitty and a correlation heatmap were used as graphical method of constructing 

causal relationships. Different causal data analysis methodologies were used, and the following 

results were obtained. 

• The logistic regression of the outcome (heart disease) on the exposure (fasting blood sugar) 

adjusted for confounders and mediators were fitted, and the model was checked for its 

goodness and validities of the assumption for logistic regression and the result has revealed 

that the model fit to the data well but the effect the exposure on the outcome was found to be 

non-significant. 

• The bootstrap estimate of the average treatment was done under the Bayesian set up, by 

imposing weak priors on the coefficient to obtain the prior estimate of the average treatment 

effect with its credible interval, and the posterior summary of regression coefficient. The 

results have indicated that the posterior estimate of ATE was not significantly different from 

zero and the posterior mean of the treatment effect adjusted for the covariate was also not 

significantly different from zero. 

• Propensity score methods were used in the exposure model, outcome model and matching. 

Density of propensity score validate the positivity assumption. The weighted logistic 

regression exposure model estimates an OR greater than 1, but insignificant. The logistic 

regression outcome model estimates an OR less than 1, but insignificant. The matching 

method estimates a positive, but insignificant ATT. All three suggest the causal relationship 

of high fasting blood sugar on the presence of heart disease is not significant.  

• TMLE, AIPTW, and G-Computation were run to estimate the average treatment effect of fbs 

on heart disease, adjusting for confounders of age and sex. For TMLE, it was found that both 

the additive effect and the odds ratio were non-significant. Also, the AIPTW estimate of the 

ATE was found to not be statistically significant. G-computation was significant, but this 

was disregarded as being a biased estimate due to model misspecification. 

• Mediation analysis did not prove cholesterol to have any significant mediation effect between 

fasting blood sugar and the diagnosis of heart disease. Using the parametric linear model, 

insignificant results were found with the confidence interval for the normal indirect effect 

containing 0. It cannot be reasonably assumed that cholesterol has any mediation effect. 
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Appendix: R code used in the study 

The following the main component of R code used in this project knitted from Rmakdown 

to word. 

Causal Effect of Fasting Blood Sugar on Heart Attack 

Group 3 

Introduction 

This report implements a logistic regression analysis to estimate the causal effect of fasting blood sugar (FBS) on 

heart attack (any heart disease) using the Cleveland UCI heart dataset. We fit two main models: 

• Model 1: Adjusts for age and sex (total effect of FBS, conditional on these confounders). 

• Model 2: Additionally adjusts for cholesterol and resting blood pressure (direct effect of FBS, controlling 

for potential mediators). 

We present odds ratios and confidence intervals using knitr::kable() to create publication-ready tables. 

Data Import 

heart_raw <- readr::read_csv("C:/Users/16673/OneDrive - University of Missouri/

Fall 2025/Causal Inference/Project/Heart_disease_cleveland_new(in).csv", show_c

ol_types = FALSE) 

heart_raw %>% 

  head() %>% 

  kable(caption = "Head of raw Cleveland dataset") %>% 

  kable_styling(full_width = FALSE) 

Head of raw Cleveland dataset  

age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  ca  thal  target  

63  1  0  145  233  1  2  150  0  2.3  2  0  2  0  

67  1  3  160  286  0  2  108  1  1.5  1  3  1  1  

67  1  3  120  229  0  2  129  1  2.6  1  2  3  1  

37  1  2  130  250  0  0  187  0  3.5  2  0  1  0  

41  0  1  130  204  0  2  172  0  1.4  0  0  1  0  

56  1  1  120  236  0  0  178  0  0.8  0  0  1  0  

Variable Definitions and Data Preparation 
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heart <- heart_raw %>% 

  mutate( 

    # Outcome: binary indicator of any heart disease 

    target = ifelse(target > 0, 1, 0), 

    target = factor(target, levels = c(0, 1), labels = c("No disease", "Disease

")), 

 

    # Exposure: FBS > 120 mg/dl (assumes original fbs is 0/1) 

    fbs = factor(fbs, levels = c(0, 1), labels = c("<=120", ">120")), 

 

    # Sex: 0 = female, 1 = male 

    sex = factor(sex, levels = c(0, 1), labels = c("Female", "Male"))  ) 

# Keep complete cases for variables used in the main models 

heart_cc <- heart %>% 

  select(target, fbs, age, sex, chol, trestbps) %>% 

  drop_na() 

heart_cc %>% 

  head() %>% 

  kable(caption = "Head of analysis dataset (complete cases)") %>% 

  kable_styling(full_width = FALSE) 

Head of analysis dataset (complete cases)  

target  fbs  age  sex  chol  trestbps  

No disease  >120  63  Male  233  145  

Disease  <=120  67  Male  286  160  

Disease  <=120  67  Male  229  120  

No disease  <=120  37  Male  250  130  

No disease  <=120  41  Female  204  130  

No disease  <=120  56  Male  236  120  

Descriptive Statistics 

# Summary of key variables 
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summary_table <- heart_cc %>% 

  summarise( 

    n = n(), 

    mean_age = mean(age), 

    sd_age = sd(age), 

    mean_chol = mean(chol), 

    sd_chol = sd(chol), 

    mean_trestbps = mean(trestbps), 

    sd_trestbps = sd(trestbps) 

  ) %>% 

  t() %>% 

  as.data.frame() %>% 

  rownames_to_column(var = "Statistic") 

kable(summary_table, col.names = c("Statistic", "Value"), 

      caption = "Basic descriptive statistics") %>% 

  kable_styling(full_width = FALSE) 

Basic descriptive statistics  

Statistic  Value  

n  303.000000  

mean_age  54.438944  

sd_age  9.038662  

mean_chol  246.693069  

sd_chol  51.776918  

mean_trestbps  131.689769  

sd_trestbps  17.599748  

# Cross-tabulations 

ftable_fbs_target <- table(heart_cc$fbs, heart_cc$target) 

ftable_fbs_target %>% 

  as.data.frame() %>% 

  pivot_wider(names_from = Var2, values_from = Freq) %>% 

  kable(caption = "FBS by heart disease status") %>% 
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  kable_styling(full_width = FALSE) 

FBS by heart disease status  

Var1  No disease  Disease  

<=120  141  117  

>120  23  22  

Model 1: Total Effect of FBS (Adjusted for Age and Sex) 

model1 <- glm(target ~ fbs + age + sex, 

              data = heart_cc,family = binomial) 

 

# Goodness of fit test 

library(rms) 

 

lrm_model <- lrm(target ~ fbs + age + sex, data = heart_cc,x = TRUE, y = TRUE) 

residuals(lrm_model, "gof") 

## Sum of squared errors     Expected value|H0                    SD  

##            64.8367953            64.5614450             0.2570878  

##                     Z                     P  

##             1.0710362             0.2841532 

library(rcompanion) 

 

nagelkerke(model1) 

## $Models 

##                                                            

## Model: "glm, target ~ fbs + age + sex, binomial, heart_cc" 

## Null:  "glm, target ~ 1, binomial, heart_cc"               

##  

## $Pseudo.R.squared.for.model.vs.null 

##                              Pseudo.R.squared 

## McFadden                             0.109580 

## Cox and Snell (ML)                   0.140292 

## Nagelkerke (Cragg and Uhler)         0.187484 

##  

## $Likelihood.ratio.test 
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##  Df.diff LogLik.diff  Chisq    p.value 

##       -3     -22.901 45.802 6.2477e-10 

# $Number.of.observations 

## Model: 303 

## Null:  303 

## $Messages 

## [1] "Note: For models fit with REML, these statistics are based on refitting

 with ML" 

##  

## $Warnings 

## [1] "None" 

# Odds ratios and 95% CIs 

model1_or <- tidy(model1, conf.int = TRUE, exponentiate = TRUE) 

 

kable(model1_or,digits = 3, 

      caption = "Model 1: Logistic regression of heart disease on FBS, age, and

 sex (odds ratios)") %>% 

  kable_styling(full_width = FALSE) 

Model 1: Logistic regression of heart disease on FBS, age, and sex (odds ratios)  

term  estimate  std.error  statistic  p.value  conf.low  conf.high  

(Intercept)  0.008  0.900  -5.363  0.000  0.001  0.044  

fbs>120  0.884  0.347  -0.355  0.723  0.445  1.747  

age  1.069  0.015  4.437  0.000  1.038  1.101  

sexMale  4.506  0.290  5.187  0.000  2.588  8.100  

Model 2: Direct Effect of FBS (Adjusted for Age, Sex, Cholesterol, and Resting BP) 

model2 <- glm(target ~ fbs + age + sex + chol + trestbps, 

              data = heart_cc,  family = binomial) 

 

summary(model2) 

##  

## Call: 

## glm(formula = target ~ fbs + age + sex + chol + trestbps, family = binomial,
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##     data = heart_cc) 

##  

## Coefficients: 

##              Estimate Std. Error z value Pr(>|z|)     

## (Intercept) -7.489660   1.392869  -5.377 7.57e-08 *** 

## fbs>120     -0.213751   0.353462  -0.605 0.545356     

## age          0.056500   0.015595   3.623 0.000291 *** 

## sexMale      1.688617   0.309006   5.465 4.64e-08 *** 

## chol         0.004533   0.002536   1.787 0.073923 .   

## trestbps     0.014849   0.007711   1.926 0.054131 .   

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 417.98  on 302  degrees of freedom 

## Residual deviance: 364.70  on 297  degrees of freedom 

## AIC: 376.7 

##  

## Number of Fisher Scoring iterations: 3 

library(rcompanion) 

nagelkerke(model2) 

## $Models 

##                                                                              

## Model: "glm, target ~ fbs + age + sex + chol + trestbps, binomial, heart_cc" 

## Null:  "glm, target ~ 1, binomial, heart_cc"                                 

##  

## $Pseudo.R.squared.for.model.vs.null 

##                              Pseudo.R.squared 

## McFadden                             0.127467 

## Cox and Snell (ML)                   0.161247 

## Nagelkerke (Cragg and Uhler)         0.215487 

##  

## $Likelihood.ratio.test 

##  Df.diff LogLik.diff  Chisq    p.value 

##       -5      -26.64 53.279 2.9476e-10 

##  
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## $Number.of.observations 

##            

## Model: 303 

## Null:  303 

##  

## $Messages 

## [1] "Note: For models fit with REML, these statistics are based on refitting

 with ML" 

##  

## $Warnings 

## [1] "None" 

model2_or <- tidy(model2, conf.int = TRUE, exponentiate = TRUE) 

 

kable(model2_or,digits = 3, 

      caption = "Model 2: Logistic regression adding cholesterol and resting BP

 (odds ratios)") %>% 

  kable_styling(full_width = FALSE) 

Model 2: Logistic regression adding cholesterol and resting BP (odds ratios)  

term  estimate  std.error  statistic  p.value  conf.low  conf.high  

(Intercept)  0.001  1.393  -5.377  0.000  0.000  0.008  

fbs>120  0.808  0.353  -0.605  0.545  0.401  1.613  

age  1.058  0.016  3.623  0.000  1.027  1.092  

sexMale  5.412  0.309  5.465  0.000  3.008  10.138  

chol  1.005  0.003  1.787  0.074  1.000  1.010  

trestbps  1.015  0.008  1.926  0.054  1.000  1.031  

Comparison of FBS Effect Across Models 

comparison <- bind_rows( 

  model1_or %>% mutate(model = "Model 1"), 

  model2_or %>% mutate(model = "Model 2") 

) %>% 

  filter(term == "fbs>120") %>% 



   

 

31 
 

  select(model, estimate, conf.low, conf.high, p.value) 

 

kable(comparison, 

      digits = 3, 

      caption = "Comparison of FBS effect between Model 1 and Model 2") %>% 

  kable_styling(full_width = FALSE) 

Comparison of FBS effect between Model 1 and Model 2  

model  estimate  conf.low  conf.high  p.value  

Model 1  0.884  0.445  1.747  0.723  

Model 2  0.808  0.401  1.613  0.545  

Model Diagnostics 

# Hosmer-Lemeshow test for Model 2 

hl_model2 <- ResourceSelection::hoslem.test( 

  x = as.numeric(heart_cc$target) - 1, 

  y = fitted(model2),  g = 10) 

 

hl_model2 

##  

##  Hosmer and Lemeshow goodness of fit (GOF) test 

##  

## data:  as.numeric(heart_cc$target) - 1, fitted(model2) 

## X-squared = 9.1613, df = 8, p-value = 0.3289 

# VIF for multicollinearity 

vif_vals <- car::vif(model2) 

 

vif_df <- tibble( 

  term = names(vif_vals), 

  VIF  = as.numeric(vif_vals)) 

 

kable(vif_df, digits = 2, caption = "Variance inflation factors (Model 2)") %>% 

  kable_styling(full_width = FALSE) 
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Variance inflation factors (Model 2)  

term  VIF  

fbs  1.04  

age  1.14  

sex  1.18  

chol  1.11  

trestbps  1.11  

# ROC curve and AUC for Model 2 

roc_obj <- pROC::roc(heart_cc$target, fitted(model2)) 

auc_val <- pROC::auc(roc_obj) 

auc_val 

## Area under the curve: 0.7277 

plot(roc_obj, col = "steelblue", main = "ROC Curve for Model 2") 

 

Interpretation 

In Model 1, which adjusts only for age and sex, the odds ratio for FBS>120 represents the total effect of elevated 

fasting blood sugar on the odds of heart disease, conditional on these confounders. 



   

 

33 
 

Mediation using Package 

# R mediation script for Cleveland heart data 

# Assumes: heart_cc data.frame with columns fbs, chol, trestbps, age, sex, targ

et 

 

# --- Packages ------------------------------------------------------ 

if (!requireNamespace("mediation", quietly=TRUE)) install.packages("mediation") 

if (!requireNamespace("boot", quietly=TRUE)) install.packages("boot") 

if (!requireNamespace("dplyr", quietly=TRUE)) install.packages("dplyr") 

library(mediation) 

library(boot) 

library(dplyr) 

 

# --- Quick data checks ---------------------------------------------- 

# Drop obvious missing rows for this demonstration (or use multiple imputation 

separately) 

#heart_cc_cc <- heart_cc# %>% drop_na(fbs, chol, trestbps, age, sex, target) 

 

# --- 1) Fit mediator models (two linear models, one per mediator) ------------

- 

 

med_chol <- lm(chol ~ fbs + age + sex, data = heart_cc) 

med_tbp  <- lm(trestbps ~ fbs + age + sex, data = heart_cc) 

 

summary(med_chol) 

##  

## Call: 

## lm(formula = chol ~ fbs + age + sex, data = heart_cc) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -129.62  -33.68   -4.29   28.74  289.78  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept) 200.6083    18.5762  10.799  < 2e-16 *** 

## fbs>120      -0.6148     8.1518  -0.075 0.939934     
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## age           1.0987     0.3224   3.408 0.000745 *** 

## sexMale     -20.0553     6.1994  -3.235 0.001353 **  

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 50.01 on 299 degrees of freedom 

## Multiple R-squared:  0.07622,    Adjusted R-squared:  0.06695  

## F-statistic: 8.223 on 3 and 299 DF,  p-value: 2.825e-05 

summary(med_tbp) 

##  

## Call: 

## lm(formula = trestbps ~ fbs + age + sex, data = heart_cc) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -37.505 -10.864  -1.376  10.265  62.161  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept) 103.8960     6.2201  16.703  < 2e-16 *** 

## fbs>120       7.2308     2.7296   2.649   0.0085 **  

## age           0.5124     0.1080   4.746 3.22e-06 *** 

## sexMale      -1.7247     2.0758  -0.831   0.4067     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 16.75 on 299 degrees of freedom 

## Multiple R-squared:  0.1036, Adjusted R-squared:  0.0946  

## F-statistic: 11.52 on 3 and 299 DF,  p-value: 3.633e-07 

# --- 2) Fit outcome model (binary outcome). Include interactions with each med

iator 

# We use a logistic regression for target. Include product terms fbs*chol and f

bs*trestbps. 

 

outcome_model <- glm(target ~ fbs * chol + fbs * trestbps + age + sex, 

                     family = binomial, data = heart_cc) 

summary(outcome_model) 
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##  

## Call: 

## glm(formula = target ~ fbs * chol + fbs * trestbps + age + sex,  

##     family = binomial, data = heart_cc) 

##  

## Coefficients: 

##                   Estimate Std. Error z value Pr(>|z|)     

## (Intercept)      -7.002047   1.455579  -4.810 1.51e-06 *** 

## fbs>120          -4.977487   3.275178  -1.520 0.128571     

## chol              0.003206   0.002704   1.186 0.235772     

## trestbps          0.012456   0.008617   1.445 0.148325     

## age               0.058435   0.015667   3.730 0.000192 *** 

## sexMale           1.755474   0.313735   5.595 2.20e-08 *** 

## fbs>120:chol      0.011121   0.007504   1.482 0.138342     

## fbs>120:trestbps  0.014677   0.019165   0.766 0.443785     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 417.98  on 302  degrees of freedom 

## Residual deviance: 361.69  on 295  degrees of freedom 

## AIC: 377.69 

##  

## Number of Fisher Scoring iterations: 4 

# ---------------------------------------------------------------------------- 

# Option A: Single-mediator mediation analysis using the 'mediation' package 

# (run separately for chol and for trestbps). This estimates NIE and NDE on the 

# outcome scale chosen by model (here logistic -> effects interpreted on probab

ility scale 

# via averaging / quasi-Bayesian sims done by 'mediate'). 

# 

# NOTE: mediation::mediate supports one mediator at a time. 

# -----------------------------------------------------------------------------

-- 

# For mediator = chol 

set.seed(2025) 
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med_out_chol <- mediate(model.m = med_chol,     # mediator model 

                        model.y = outcome_model,# outcome model (must include m

ediator) 

                        treat = "fbs",          # exposure 

                        mediator = "chol",      # mediator name 

                        boot = TRUE, sims = 1000) # sims for CIs 

summary(med_out_chol) 

##  

## Causal Mediation Analysis  

##  

## Nonparametric Bootstrap Confidence Intervals with the Percentile Method 

##  

##                             Estimate 95% CI Lower 95% CI Upper p-value 

## ACME (control)           -0.00041033  -0.01705061   0.01270288   0.878 

## ACME (treated)           -0.00167265  -0.05677866   0.03934362   0.852 

## ADE (control)            -0.04661810  -0.19727308   0.09104368   0.472 

## ADE (treated)            -0.04788041  -0.19783817   0.08660507   0.432 

## Total Effect             -0.04829074  -0.19870211   0.08905021   0.424 

## Prop. Mediated (control)  0.00849711  -0.61115050   0.63561151   0.814 

## Prop. Mediated (treated)  0.03463699  -2.38110791   3.30702741   0.804 

## ACME (average)           -0.00104149  -0.03353458   0.02465882   0.864 

## ADE (average)            -0.04724925  -0.19753319   0.08974822   0.462 

## Prop. Mediated (average)  0.02156705  -1.51098649   1.84356713   0.804 

## Sample Size Used: 303  

## Simulations: 1000 

plot(med_out_chol) 
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# For mediator = trestbps 

set.seed(2025) 

med_out_tbp <- mediate(model.m = med_tbp, 

                       model.y = outcome_model, 

                       treat = "fbs", 

                       mediator = "trestbps", 

                       boot = TRUE, sims = 1000) 

summary(med_out_tbp) 

##  

## Causal Mediation Analysis  

##  

## Nonparametric Bootstrap Confidence Intervals with the Percentile Method 

##  

##                            Estimate 95% CI Lower 95% CI Upper p-value   

## ACME (control)            0.0188068   -0.0063819    0.0563049   0.150   

## ACME (treated)            0.0373535   -0.0122418    0.1010035   0.166   

## ADE (control)            -0.0547907   -0.2047943    0.0905455   0.440   

## ADE (treated)            -0.0362439   -0.1867432    0.1112281   0.612   

## Total Effect             -0.0174372   -0.1708257    0.1339671   0.806   

## Prop. Mediated (control) -1.0785458   -4.3125148    3.8268090   0.816   

## Prop. Mediated (treated) -2.1421788   -8.3362744    8.3771470   0.912   

## ACME (average)            0.0280801   -0.0017082    0.0702551   0.078 . 

## ADE (average)            -0.0455173   -0.1941982    0.1017542   0.524   
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## Prop. Mediated (average) -1.6103623   -6.8294023    5.9285872   0.864   

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Sample Size Used: 303 

## Simulations: 1000 

plot(med_out_tbp) 

 

dat <- read.csv("C:/Users/16673/OneDrive - University of Missouri/Fall 2025/Cau

sal Inference/Project/Heart_disease_cleveland_new(in).csv") 

 

m.mod <- glm(chol ~ fbs + age + sex + ca, data = dat) 

 

y.mod <- glm(target ~ fbs * chol + age + sex + ca, 

             data = dat, family = binomial) 

summary(m.mod) 

##  

## Call: 

## glm(formula = chol ~ fbs + age + sex + ca, data = dat) 

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept) 207.9085    19.2992  10.773  < 2e-16 *** 

## fbs          -1.7194     8.1797  -0.210 0.833649     

## age           0.9251     0.3460   2.674 0.007909 **  

## sex         -21.1319     6.2401  -3.386 0.000803 *** 

## ca            4.5884     3.3491   1.370 0.171713     
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## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for gaussian family taken to be 2494.049) 

##  

##     Null deviance: 809616  on 302  degrees of freedom 

## Residual deviance: 743227  on 298  degrees of freedom 

## AIC: 3236.8 

##  

## Number of Fisher Scoring iterations: 2 

summary(y.mod) 

##  

## Call: 

## glm(formula = target ~ fbs * chol + age + sex + ca, family = binomial,  

##     data = dat) 

##  

## Coefficients: 

##              Estimate Std. Error z value Pr(>|z|)     

## (Intercept) -4.369085   1.190757  -3.669 0.000243 *** 

## fbs         -2.311391   1.956916  -1.181 0.237547     

## chol         0.003274   0.002981   1.099 0.271956     

## age          0.028222   0.017128   1.648 0.099411 .   

## sex          1.682402   0.341785   4.922 8.55e-07 *** 

## ca           1.188853   0.195514   6.081 1.20e-09 *** 

## fbs:chol     0.007640   0.007764   0.984 0.325101     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 417.98  on 302  degrees of freedom 

## Residual deviance: 316.77  on 296  degrees of freedom 

## AIC: 330.77 

##  

## Number of Fisher Scoring iterations: 4 

natural_effects <- function(data, m.mod, y.mod){ 
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  d <- data 

   

 

  chol1 <- predict(m.mod, newdata = transform(d, fbs = 1), type = "response") 

  chol0 <- predict(m.mod, newdata = transform(d, fbs = 0), type = "response") 

   

  # Natural Direct Effect (NDE) 

  # E[Y(fbs=1, M=M(0))] − E[Y(fbs=0, M=M(0))] 

   

  y10 <- predict(y.mod, 

                 newdata = transform(d, fbs = 1, chol = chol0), 

                 type = "response") 

   

  y00 <- predict(y.mod, 

                 newdata = transform(d, fbs = 0, chol = chol0), 

                type = "response") 

    NDE <- mean(y10 - y00) 

    #Natural Indirect Effect (NIE 

  # E[Y(fbs=1, M=M(1))] − E[Y(fbs=1, M=M(0))] 

    y11 <- predict(y.mod, 

                 newdata = transform(d, fbs = 1, chol = chol1), 

                 type = "response") 

    y10b <- y10  # already computed 

    NIE <- mean(y11 - y10b) 

    #Total Effect 

  TE <- mean(y11 - y00) 

    list(NDE = NDE, NIE = NIE, TE = TE) 

} 

effects <- natural_effects(dat, m.mod, y.mod) 

effects 

## $NDE 

## [1] -0.0745981 

##  

## $NIE 

## [1] -0.003068275 

##  

## $TE 
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## [1] -0.07766638 

library(boot) 

boot_fun <- function(d, idx){ 

  dd <- d[idx, ] 

  m.mod.b <- glm(chol ~ fbs + age + sex + ca, data = dd) 

  y.mod.b <- glm(target ~ fbs * chol + age + sex + ca, 

                 data = dd, family = binomial) 

  ef <- natural_effects(dd, m.mod.b, y.mod.b) 

  c(NDE = ef$NDE, NIE = ef$NIE, TE = ef$TE) 

} 

set.seed(123) 

boot.out <- boot(data = dat, statistic = boot_fun, R = 1000) 

boot.ci(boot.out, type = "perc", index = 1)  # NDE 

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

## Based on 1000 bootstrap replicates 

## CALL :  

## boot.ci(boot.out = boot.out, type = "perc", index = 1) 

##  

## Intervals :  

## Level     Percentile      

## 95%   (-0.2121,  0.0745 )   

## Calculations and Intervals on Original Scale 

boot.ci(boot.out, type = "perc", index = 2)  # NIE 

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

## Based on 1000 bootstrap replicates 

##  

## CALL :  

## boot.ci(boot.out = boot.out, type = "perc", index = 2) 

##  

## Intervals :  

## Level     Percentile      

## 95%   (-0.0517,  0.0310 )   

## Calculations and Intervals on Original Scale 

boot.ci(boot.out, type = "perc", index = 3)  # TE 

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

## Based on 1000 bootstrap replicates 

##  
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## CALL :  

## boot.ci(boot.out = boot.out, type = "perc", index = 3) 

##  

## Intervals :  

## Level     Percentile      

## 95%   (-0.2198,  0.0666 )   

## Calculations and Intervals on Original Scale 

 


